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12. SAPROPHYTIC CULTIVATION OF CLAVICEPS

ZDENÌK MALINKA

Galena a.s., 747 70 Opava 9, Czech Republic

12.1. INTRODUCTION

12.1.1. History

Biological, non-parasitic production of ergot alkaloids is carried out by saprophytic
cultivation of production strains of different species of the genus Claviceps. The
saprophytic cultivations of Claviceps spp. were experimentally performed as early
as in the last century (Bové, 1970). Mycelial saprophytic cultures in nutrient
media were reported since the 1920s (Bonns, 1922; McCrea, 1931; Schweizer,
1941; De Tempe, 1945). These experiments provided the basis of cultivation of
the fungi Claviceps under artificial nutritional conditions but did not yet serve
for alkaloid production or were not reproducible (McCrea, 1933).

Successful work oriented at the directed use of the saprophytic cultivation for
alkaloid manufacture depended on the isolation of clavine alkaloids from
saprophytic cultures (Abe, 1951; Abe et al., 1951, 1952, 1953). The processes
developed in a number of laboratories aimed at the industrial production of
therapeutically applicable alkaloids or their precursors (Stoll et al., 1953; Stoll et
al., 1954a; Rochelmeyer, 1959; Rutschman and Kobel, 1963a, b; Rutschman et
al., 1963). (For the history of Claviceps fermentation see Chapter 1 of this book.)

Fermentation makes possible to produce ergopeptines, paspalic acid, simple
derivatives of lysergic acid and clavine alkaloids. Ergopeptines can be used for
therapeutical purposes directly or after semisynthetic modification. Simple
derivatives of lysergic acid, paspalic acid as well as clavines serve as a basal
structure for the subsequent semisynthetic production of pharmaceutically
utilizable alkaloids. From the simple derivatives of lysergic acid only ergometrine
is used in therapy. (For details see Chapter 13.)

12.2. PRODUCTION MICROORGANISMS

12.2.1. Sources

Fermentation production of ergot alkaloids based on saprophytic cultivation
of production strains selected from different species of the genus Claviceps
represents the most important way of biological production of the alkaloids.
However, also other filamentous fungi, able to produce ergot alkaloids, can
serve as a source of production strains. (For more details see Chapter 18 of this
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book.) The patent literature mentiones, besides Claviceps, only fungi of genera
Aspergillus (Siegle and Brunner, 1963), Hypomyces (Yamatoya and Yamamoto,
1983) and Penicillium (Kozlovsky et al., 1979). In the Claviceps fungi, selection
of strains has been described for the species C. purpurea, C. paspali and C.
fusiformis. The use of tissue cultures of plants of the Convolvulaceae family
represents so far only theoretical possibility.

Saprophytic cultures can easily be obtained from sclerotia of the appropriate
species of Claviceps. After pre-soaking with ethanol or propanol, the sclerotium
surface is sterilized by a suitable agent—resorcinol, mercury dichloride or Lugol
solution (Desai et al., 1982b; Mantle, 1969; Strnadová et al., 1986). After
washing under sterile conditions, the plectenchymatic tissue of the sclerotium
is cut and the slices are transferred on the surface of an agar growth medium.
Another method of inoculum preparation by mechanical decomposition of a
sclerotium was described by Øicièová and Øeháèek (1968). Preparation of a
saprophytic culture from the honeydew of a host plant invaded by Claviceps
sp. was also described (Janardhan and Husain, 1984). A surface saprophytic
mycelium starts growing on the medium and different asexual spores are
generated on the hyphal tips. They are mostly classified as conidia. These spores
are used for the further transfer and culture propagation, monosporic isolation
(Kybal et al., 1956; Necásek, 1954) and the following stabilization of the culture.

Culture isolation from ascospores is another method. A fungal sclerotium,
after a cold storage period, forms under suitable conditions fruiting bodies.
After ripening they release sexual ascospores, which germinate on the surface
of an agar medium and form the saprophytic mycelium (Vásárhelyi et al., 1980b).
Monosporic isolation can be performed both directly with the ascospores or
with asexual spores formed during the further saprophytic cultivation of a
mycelium grown up from an ascospore.

12.2.2. Breeding and Selection of Production Strains

Classical methods of selection pressure, mutagenesis and recombination or their
mutual combinations, can be applied to breeding production strains for
fermentative alkaloid production. With the Claviceps fungi these methods are
to a certain extent complicated by an incomplete information about the cell
nucleus for a number of potential sources. The production strains are often
highly heterogeneous and include both heterokaryotic and homokaryotic ones
(Amici et al., 1967c; Didek-Brumec et al., 1991a; Mantle and Nisbet, 1976;
Olasz et al., 1982; Spalla et al., 1969; Strnadová and Kybal, 1974). (See also
Chapter 5 on the genetics of Claviceps.)

Nutrient components are mostly used for selection pressure. Such principle
of selection in growth media, simulating the composition of phloem juice of a
host plant, is described by Strnadová et al. (1986). Another example is, e.g.,
acquisition of new strains with modified production qualities through
regeneration of protoplasts (Schumann et al., 1982, 1987).
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The principles of mutagenesis of ergot alkaloid producers are the same as
those used in bacteria and fungi. According to the literature, physical mutagenes
are often used as mutational agents—UV light (Nordmann and Bärwald, 1981;
Strnadová, 1964a, b), X-rays and gamma irradiation (Zalai et al., 1990).
Chemical agents include derivatives of N-nitrosoguanidine and nitrosourea,
ethyl methane sulfonate (Keller, 1983) or their combinations (Øeháèek et al.,
1978a), and nitrous acid (Strnadová and Kybal, 1976).

The simplest way is to expose to the chemical or physical mutagens a
suspension of fungal spores. This technique facilitates the subsequent simple
monosporic isolation, cultivation and selection of isolates originating from a
single cell. Problems arise when asporogenic fungal strains are to be selected. In
this case a suspension of hyphae or hyphal fragments can be directly exposed
to a mutagenic agent, but it brings difficulties with culture heterogeneity in the
subsequent transfer and selection. In this case it is advantageous to perform the
mutagenesis on protoplasts (Køen et al., 1988c). Protoplasts can be also prepared
from spores of sporulating strains. When protoplasts are used, the mutation
frequency is much higher (Baumert et al., 1979b; Keller, 1983; Olasz et al.,
1982; Zalai et al., 1990).

Mutants were also prepared with the ergot alkaloid biosynthetic pathway
blocked on different levels (Maier et al., 1980a; Pertot et al., 1990). When
supplemented by a modified precursor these strains can be employed for effective
mutational biosynthesis (Erge et al., 1981; Maier et al., 1980b).

With Claviceps spp., breeding using DNA recombination can be done in
two basic ways—meiotic recombination and fusion of protoplasts. In former
method a corresponding strain is cultivated parasitically to form a sclerotium
which, after its germination, then serves as the source of sexual ascospores
(Tudzynski et al., 1982; Vásárhelyi et al., 1980b). Protoplast fusion methods
have been therefore elaborated for the common species C. purpurea, C. paspali
and C. fusiformis. A problem of genetic markers had to be solved since the
markers of auxotrophy or resistance against fungicides in most cases negatively
influence the alkaloid production level of progeny strains (DidekBrumec et al.,
1991b). To eliminate these disadvantages, methods were developed resulting in
nearly 30% increase of production compared to parent strains (Didek-Brumec
et al., 1992, 1993). Interspecies hybrids that have been prepared by fusion of
protoplasts from C. purpurea+C. paspali (Spalla and Marnati, 1981) and C.
purpurea+C. fusiformis (Nagy et al., 1994) represent further possibilities of
selection of production strains. A question remains to what extent these hybrids
will be stable during manifold transfers.

Application of the above methods is followed by selection of isolates having
higher production capability or altered in some other way. The testing of all
isolates in submerged cultivation on a shaker or by stationary surface cultivation
imposes a high material requirements. Correlations were therefore studied
between morfological and physiological characteristics and alkaloid production
(Srikrai and Robbers, 1979). Selection methods based on pigmentation
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(Borowski et al., 1976; Kobel and Sanglier, 1976; Molnár et al., 1964; Udvardy
Nagy, E. et al., 1964; Wack et al., 1973), specific colour reaction (Zalai et al.,
1990), fluorescence (Gaberc-Porekar et al., 1981, 1983), enzyme activity profiles
(Schmauder and Gröger, 1983) or antimicrobial effects of clavine alkaloids
(Homolka et al., 1985) were worked out.

In the following steps an intimate selection can be performed on shakers or
in laboratory fermentors for submerged or stationary cultivation. For the most
promising isolates these works are organically interconnected with optimization
of a medium and production conditions.

Developments of molecular biology and genetics of the genus Claviceps open
new perspectives in obtaining of suitable production organisms (for more details
see Chapter 4 in this book).

12.2.3. Maintenance Improvement

Selected high-yielding strains of Claviceps spp., similarly as those of other
microorganisms, degenerate (Kobel, 1969). Also, problems of transfer of original
cultures in a fermentation technological process are connected with this fact.
Different producers of clavine alkaloids born to be transferred 6–9 times without
decrease of producing capability (Malinka et al., 1988).

It is necessary to maintain the optimal qualities of a selected production
strain by two parallel ways—conservation and dynamic ones. The conservation
way consists in keeping of stock cultures of the production strain under
conditions of maximal possible elimination of biological effects given by transfer
of cultures, ageing and other external influences. The dynamic way comprises
systematically performed selection in the frame of the maintenance improvement,
which consists in continual testing of monosporic isolates (in sporogenic lines)
or at least hyphal isolates (in asporogenic lines) made from stock cultures of the
production strain, and positive choice of a culture with optimal producing
qualities for the subsequent work. This activity can be a part of optimization of
other factors having an influence on a level and parameters of production of
the final product. Here, there is also possible to apply the before-cited procedures
of rational selection and apply selection pressure methods.

12.2.4. Long-Term Preservation of Production Strains

For long-term preservation of the production strains of Claviceps common
methods used for other fungi can be applied as reviewed e.g. by Kirsop and
Snell (1984) and by Hunter-Cervera and Belt (1996). Besides preservation of
sporulated cultures on rye grains placed in a refrigerator or a deep-freezer it is
also possible to keep frozen dried suspensions or gelatine disks. First of all non-
sporulating strains, being more sensitive to different conservation procedures,
can be preserved as cultures on agar plates under a mineral oil or, for a single
use, as a suspension of mycelium at—18°C (Køen et al., 1988c). Keeping of
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lyofilized cultures and cultures frozen in liquid nitrogen are probably the most
universal methods, though technically more complicated. Bøemek (1981)
compared these methods with different Claviceps strains and found that the
both are suitable. During lyofilization diverse protective media are applied, e.g.
serum, milk, peptone, sugars, sodium glutamate or combinations of previous
(Chomátová et al., 1985; Ustyuzhanina et al., 1991). Procedures of lyofilization
of non-sporulating strains are described by Køen et al. (1988c) and Pertot et al.
(1977). A modification of the lyofilization process for preservation of cultures
from regenerated protoplast was worked out by Baumert et al. (1979b).

As a theoretical alternative seems a method according that strains, which
produce ergot alkaloids saprophytically, are preserved as sclerotia formed on
an infected, proper host plant, e.g. rye for strains of the species Claviceps
purpurea. Viability of the sclerotia when stored in refrigerator is several years.
Questions of contingent changes of strain production characteristics due to
alternation of saprophytic and parasitic phases were treated by Breuel and Braun
(1981), and Breuel et al. (1982). During surface stationary production of peptide
alkaloids it was possible to keep production strain in the form of dried mycelium
at 4°C for 3 years without any influence to production capability (Kybal,
Malinka, unpublished results).

As a source of production strains serve internationally established culture
collections (e.g. ATCC, CBS, CCM, NRRL) or collections in certain institutes
(e.g. MZKIBK—Cimerman et al., 1992). However, industrially usable strains
are mostly patented; in the collections they are stored according to the Budapest
Convention and not commonly accessible.

12.3. FERMENTATION TECHNOLOGY

All species of ergot alkaloid producers from the Pyrenomycetes class as well as
an overwhelming majority of other fungal producers are parasites of different
plants and fungi. Principle of saprophytic cultivation is growth of a production
fungi on a synthetic medium. The saprophytic cultivation makes possible better
optimization of a production level, elimination of biosynthesis of accompanying
undesirable matters and regulation of ergot alkaloids production through
rational outside interventions. On the other side it is much more exacting on
the technological equipment. All industrially adopted processes have the same
basic aim—the maximal production of a matter with the minimum of undesirable
compounds, got in the shortest time with minimized costs of medium, equipment
and labour.

For ergot alkaloid manufacture different fermentation technologies can be
employed. In principle, they can be produced by (i) stationary cultivation, when
microorganisms are growing on the surface of a cultivation medium, both liquid
(Abe, 1951; Kybal and Vlèek, 1976; Malinka, 1988) and solid (Trejo-Hernández
et al., 1992; Trejo-Hernández and Lonsane, 1993), or (ii) submerged cultivation

Copyright © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the
Harwood Academic Publishers imprint, part of The Gordon and Breach Publishing Group.



ZDENÌK MALINKA326

with agitation of a suspension of microorganisms (Abe et al., 1951; Amici et al.,
1966; Arcamone et al., 1960; Bianchi et al., 1976; Kobel and Sanglier, 1986).
Semicontinuous and continuous cultivations (Kopp and Rehm, 1984; Køen et al.,
1986b) as well as those using immobilized microorganisms (Komel et al., 1985;
Kopp and Rehm, 1983; Køen et al., 1989a) represent specific modifications of the
submerged cultivation. General reviews of biosynthesis and production of ergot
alkaloids were published by a number of authors (Esser and Düvell, 1984; Kobel
and Sanglier, 1986; Køen et al., 1994; Mantle, 1975; Øeháèek, 1983a, b; 1984,
1991; Øeháèek and Sajdl, 1990; Robbers, 1984; So èiè and Gaberc-Porekar, 1992;
Udvardy Nagy, 1980). (For special cultivation procedures see the Chapter 7.)

In all types of fermentation it is necessary to use optimized media. Generally,
the cultivation media should fulfill the same requirements as those for saprophytic
cultivation of other fungi, i.e. they have to contain sources of energy, carbon,
nitrogen, phosphorus and with advantage also certain trace elements and some
complex matters. Price of the medium should always be taken into account and
optimal variants be chosen from the point of view of costs per an unit operation.
(For media components and physiology of production see Chapter 6.)

During the production phase, according to a kind of fermentation and
elaboration of a given fermentation process, it is desirable to follow utilization of
individual nutrients, activities of particular enzymes and a course of the proper
synthesis of the alkaloids. It is also necessary to control and regulate basic physical
and physico-chemical parameters of the culture—pH, dissolved oxygen
concentration, dissolved carbon dioxide concentration, concentration of carbon
dioxide in outlet, temperature, pressure, agitator speed or other physical
characteristics typical for a given kind of fermentation and a type of fermentor
used. During the pre-inoculation and inoculation phases, depending on
requirements of their optimal course, only some fermentation parameters should
be controlled and measured. Values of these parameters and their course during
cultivation cannot be generalized for they are very often specific for the each
production strain and the sort of the end product. To industrial production of the
ergot alkaloids there are related pertinent regulations and requirements of the state
and international institutions and offices (Priesmeyer, 1997). Basic pharmacopoieal
demands on fermentation processes are presented by Anonymous (1997).

Specific problems of fermentation production of the ergot alkaloids consist
in microbial contamination. Compared to an overwhelming majority of other
secondary metabolites production processes, fermentation of the ergot alkaloids
is marked by two negative factors—slow growth of mycelium on rich media
and none or weak antibiotic activity of the produced alkaloids. In spite of
reported antibacterial effect of clavine alkaloids (Eich and Eichberg, 1982; Eich
et al., 1995) probability of their pronounced exercise in autoprotection against
contamination is only small. For these reasons an effect of broad spectrum
antibiotics on the production strain of C. fusiformis W1 was investigated (Bøemek
et al., 1986b; Køen et al., 1986a); chloramphenicol was found as the most suitable
antibiotic. Its use can be advantageous also in semicontinuous and continuous
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processes (Køen et al., 1985; Køen et al., 1986b). Kopp (1987) having been working
with immobilized cells of Claviceps used streptomycin. The positive effect of
streptomycin and the negative one of oxytetracycline and nystatin on production
of alkaloids by not closer specified strain of Claviceps described Slokoska et al.
(1992).

12.3.1. Stationary Surface Cultivation

The stationary cultivation is commonly used for stock and starting cultures (growth
on the surface of an agar medium) without respect what a kind of cultivation
process will be used in the production phase. On the production scale there are in
particular described processes where fungal mycelium capable to produce ergot
alkaloids was growing on the surface of a liquid medium (Adams, 1962; Kobel et
al., 1962; Kybal et al., 1960; Molnár et al., 1964; Rochelmeyer, 1965; Stoll et al.,
1953; Strnadová et al., 1981, 1986). Necessity of gaining the surface as large as
possible under aseptic condition and difficulties of automation represent the main
problems of that kind of cultivation. An equipment for the stationary cultivation
representing a simple stationary fermentors (Figure 1) was developed (Vlèek and
Kybal, 1974; Kybal and Vlèek, 1976) with plastic bags filled by the inoculated
medium. The bags are manufactured by cross welding of a sterile polyethylene
hose of a proper width. After that the bags are filled up by the inoculated medium
and equipped by manifolds for controlled aeration (Malinka, 1982). During the
following stationary fermentation, which is performed in a tempered room, the
mycelium is growing on the surface of the medium. The water soluble alkaloids
are excreted into the medium whilst the hydrophobic ones remain in the mycelium
as intracellular metabolites. Manipulation with the filled cultivation bags can be
performed by a high lift truck, commonly used in stores (Figure 2). Large
cultivation area is an advantage of the plastic bag cultivation while the fact that
each bag during long-term cultivation behaves as a separated fermentor made
problems with product standardization. Even if manipulation with the bags is
mechanized the load of workers during bag filling and harvesting of a mycelium
produced is increased. More exacting cleaning of the used polyethylene foil prior
to recycling represents a non-negligible aspect, as well. Into the industrial scale
this method was introduced for production of ergocornine, and α- and ß-
ergokryptine.

The stationary surface cultivation in the plastic bags can also be adopted for
production of physiologically active asexual spores of production strains of
Claviceps purpurea (Fr.) Tul., which are used as an infection agent at field
parasitic cultivation of ergot (Harazim et al., 1984; Valík and Malinka, 1992).
This methods is employed for cyclosporin A production (Mat’ha, 1993; Mat’ha
et al., 1993), for cultivation of entomopathogenic fungi with the aim of
production of spores used in manufacturing of bioinsecticides, and for cultivation
of the mould Trichoderma harzianum producing mycofungicide (Kybal and
Nesrsta, 1994; Nesrsta, 1989).
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Kybal and Strnadová (1982) described also other, technically more complicated
equipments for stationary surface cultivation to prepare inoculum for field parasitic
cultivation of ergot.

12.3.2. Submerged Cultivation

The submerged cultivation is used for manufacturing of different microbial
products and of ergot alkaloids as well. By the means of laboratory scale
submerged cultivation most of knowledge of biogenesis of the ergot alkaloids
and physiology of their producers was gained. Contemporary expertise makes
possible to control effectively individual production stages, influence
biosynthesis of alkaloids and to a considerable extent eliminate unfavorable
factors typical for selected high producing strains, such as e.g. loss of
sporulating capability, production of glucans and minimal adaptation to
variable cultivation conditions.

Figure 1 Flowsheet of stationary surface cultivation in plastic bags
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A basis of the submerged fermentation on laboratory scale as well as the
primary step in an overwhelming majority of industrial scale processes is a
shaker culture (Figure 3). In industrial scale production the aim of this cultivation
is to obtain a sufficient amount of inoculum for the next cultivation step. Medium
composition is subordinated to the aim of reaching fast germination of spores
of production microorganism and fast growth of mycelial hyphae, or, as the
case may be in specific processes, fast sporulation, and obtaining a mixture of
hyphae and asexual spores.

For inoculation there is usually used a suspension of spores and/or hyphae
of the aerial mycelium from the surface of primal cultures growing on agar
solid media, or hyphal fragments when non-sporulating strains are worked
with. Lyofilized cultures or microorganisms kept in liquid nitrogen can be also
used as an inoculating material.

Preparation of the shaker cultures is usually made on rotary shakers. If for
some production strains less mechanical stress of hyphae is more suitable,
reciprocal shakers can be used. The shaker culture can be replaced by a culture
from a laboratory fermentor.

The following steps are always run in fermentors. Volume of the end
production step is decisive for the number of previous cultivation steps for
propagation of necessary amount of inoculum. During the inoculum preparation
it can be also advantageously manipulated to evoke an optimal state of the

Figure 2 Stationary cultivation equipment
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culture for biosynthesis of ergot alkaloids in the production step (Soèiè et al.,
1985, 1986). Most often there are three cultivation steps, viz. cultivation in
pre-inoculating tanks, seed tanks and production fermentors (Figure 4).
Increasing the number of the cultivation steps is usually undesirable for with
increasing transfers production capability of the culture is diminished. This
fact limits also the possibility of recirculation of a part of the cultivation medium
from the production step for inoculation of the following cultivation.

Similarly as at other filamentous fungi, during Claviceps cultivation
fermentors have to be used enabling to work with viscous media. Non-newtonian
character of liquid flow becomes obvious only during the course of cultivation,
on the one hand due to growth of hyphal filaments, on the other hand because
of production of glucans.

12.3.3. Alternative Fermentation Processes

Ergot alkaloids can be manufactured also by alternative fermentation processes,
e.g. by those using nontraditional substrates or immobilized cells of Claviceps
spp. or their subunits. Semicontinuous or continuous cultivations represent other
alternatives of the saprophytic cultivation.

Stationary solid state cultivation on the surface of solid substrates soaked by
a liquid medium has been reported by Trejo Hernández et al. (1992) and Trejo
Hernández and Lonsane (1993). In these studies, growth and production of

Figure 3 Cultivation of shaker culture
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alkaloids were investigated with different species of the genus Claviceps on sugar-
cane pith bagasse and significant dependence of the production level and the
spectrum of synthesized alkaloids on composition of the medium used for solid
substrate impregnation was found. However, there is discussible a possibility of
application of this process on the industrial scale.

Other alternative types of cultivation are described in Chapter 6.

12.4. MANUFACTURE OF CLAVINE ALKALOIDS

After transfer to a saprophytic culture a number of parasitic strains of ergot,
both wild or improved, is able to synthesize only clavine alkaloids and lose the

Figure 4 Flowsheet of submerged cultivation
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ability to perform subsequent biosynthetic steps. For this reason a vast number
of production strains exists, most frequently of the species Claviceps purpurea,
e.g. CP 7/274 CCM F-632 (Øeháèek et al., 1978b), 88-EP/1988 (Køen et al.,
1988c), IBP 182 ZIMET 43673 (Schumann et al., 1984), IBP 180 ZIMET PA
138 (Baumert et al., 1979a), Pepty 695/e (Erge et al., 1984), Pepty 695/ch-I
(Gröger et al., 1991; Maier et al., 1988a,b), 59 CC 5/86 (Øeháèek et al., 1986a),
SL 096 CCM F-733 (Flieger et al., 1989b), EK 10 (Pazoutová et al., 1990),
AA218 (Harris and Horwell, 1992), CBS 164.59 (Kopp, 1987) and C. fusiformis,
e.g. W1 (Køen et al., 1985), F 27 (Køen et al., 1985), MNG 00211 (Trinn et al.,
1983), NCAIM 001107 (Trinn et al., 1990), CF 13 (Rozman et al., 1985, 1987).

The species Claviceps paspali has been reported only sporadically, e.g. strain
DSM 2838, a producer of festuclavine (Wilke and Weber, 1985a) and strains Li
342 (ATCC 34500) (Erge et al., 1972) and Li 342/SE 60 (Gröger, 1965),
producers of chanoclavine-I; the same holds for not closely identified strains of
the genus Claviceps, e.g. DSM 2837, which produces chanoclavine (Wilke and
Weber, 1985b), IBFM-F-401, a producer of elymoclavine (Kozlovsky et al.,
1978), and the strains 47A and 231, from whose cultures norsetoclavine was
isolated for the first time (Ramstad et al., 1967).

The patent literature reports, besides the genus Claviceps, also strains
Hypomyces aurantus IFO 773, which produce ergocornine, agroclavine,
elymoclavine and chanoclavine (Yamatoya and Yamamoto, 1983), and
Penicillium corylophillum IBFM-F-152 (Kozlovsky et al., 1979), which produces
epoxyagroclavine I.

A number of clavine alkaloids, in addition to the mentioned fungal species,
was isolated also from Claviceps gigantea, Claviceps spp. originating from
different host plants, fungi of the Penicillium, Aspergillus, Rhizopus and other
genera, and from seeds of plants of the Convolvulaceae family. A review was
compiled by Flieger et al. (1997). Apart from the genus Claviceps, nothing is
known about other fungal species employed in the selection of industrially
applicable production strains, except for the two above cases. It is, however,
possible that some isolates of Claviceps sp., mentioned in connection with the
isolation of certain clavine alkaloids, served as a starting material in the selection
of production strains (Stoll et al., 1954b).

12.4.1. Production of ∆∆∆∆∆8,9-Ergolenes

Industrial processes for manufacture of agroclavine and elymoclavine are best
elaborated among the methods for acquiring of clavine alkaloids. Due to the
direct biosynthetic succession of these alkaloids they are usually produced in
mixtures (Adams, 1962; Baumert et al., 1979b; Bøemek et al., 1986c, 1989; Erge
et al., 1984; Øeháèek et al., 1978a, b, c; 1984a; 1986b; Øeháèek and Rylko,
1985; Takeda Pharm. Ind. 1956; Trinn et al., 1983; Wack et al., 1966; Windisch
and Bronn, 1960; Yamatoya and Yamamoto, 1983).
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As a substrate for subsequent chemical operations elymoclavine is superior to
agroclavine and efforts were therefore made to develop processes leading to
elymoclavine production with maximal possible elimination of agroclavine.
Generally, this goal can be achieved by selecting proper production strains and
by optimizing cultivation conditions. The direct biosynthetic succession of the
two alkaloids makes it possible to use also bioconversion processes.

Production strains for elymoclavine manufacture and general cultivation
conditions have been described in a number of patents (Kozlovsky et al., 1978;
Køen et al., 1985, 1988c; Øeháèek et al., 1984b; Schumann et al., 1984; Trinn et
al., 1983, 1990). In addition to the patent literature many works refer to results
of investigation of individual aspects of physiology and biochemistry of clavine
alkaloid synthesis. These works were done either directly with production
strains, e.g. C. purpurea 129 (later classified as C. fusiformis) producing 4500–
7000 mg L-1 and isolates selected from it (Desai and Øeháèek, 1982; Køen and
Øeháèek, 1984; K øen et al., 1984, 1987; Pazoutová et al., 1977, 1980, 1981;
Pazoutová and Øeháèek, 1978, 1981a, b, 1984; Øeháèek et al., 1977; Sajdl et
al., 1978; Voøíšek et al., 1981) or with strains of different provenance, e.g.
Clavices sp. SD-58 (ATCC 26019) (later classified as C. fusiformis; Desai et al.,
1982a, 1983, 1986; Eich and Sieben., 1985; Kozikowski et al., 1993; K øen et al.,
1987; Otsuka et al., 1980; Patel and Desai, 1985; Robbers et al., 1972, 1978,
1982; Robertson et al., 1973; Rylkoetal., 1986, 1988a; Schmauder et al., 1981a,
b, 1986; Vaidya and Desai, 1981a, b, 1982, 1983a, b), C. purpurea 59 (C.
fusiformis) (Pazoutová et al. 1986, 1987a, b, 1988, 1989, 1990; Pazoutová and
Sajdl, 1988; Sajdl et al., 1988b), Claviceps sp. CP II (Krustev et al., 1984;
Slokoska et al., 1981, 1985, 1988) and Claviceps sp. PRL 1980, ATCC 26245
(Kim et al., 1981; Taber, 1964).

Bioconversion of agroclavine to elymoclavine can be done by both free and
immobilized cells of suitable production strains (Bøemek et al., 1986a; K øen et
al., 1989a) with efficiency of up to 97% (Malinka and Bøemek, 1989). In
addition to strains producing clavine alkaloids, also those synthesizing simple
derivatives of lysergic acid can be used for the conversion. In this case a
preferential bioconversion of agroclavine to elymoclavine can be brought about
by a simple modification of cultivation conditions (Flieger et al., 1989a;
Harazim et al., 1989). Flieger et al., 1989b described also a process of
purification of clavine alkaloids combined with a conversion to elymoclavine
and lysergic acid α-hydroxyethylamide; these products can be easily separated
and used for semisynthesis. Other strains able to convert agroclavine to
elymoclavine are C. fusiformis SD-58, and Claviceps sp. KK-2, Se-134 and
47A (Sieben et al., 1984). An exhaustive review on the bioconversion of ergot
alkaloids was worked out by K øen (1991) and a review can be also found in
Chapter 10.

During the cultivation of commonly used strains, growth of a culture and
production of clavine alkaloids are accompanied by the concurrent biosynthesis
of glucans. These compounds unfavourably influence medium rheology,
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complicate proper mixing and aeration, slow down oxygen transfer and make
the cultivation medium foam. Processes elaborated to eliminate glucan production
employ a special composition of an inoculation medium, two-stage preparation
of inoculum and a special composition of a production medium (Bøemek et al.,
1986c). In this way, physiological conditions are reached which decrease or
eliminate the synthesis of glucans and, at the same time, have a positive effect
on alkaloid biosynthesis. Production of up to 4600 mg L-1 of total alkaloids (out
of which 2300 mg L-1 is due to elymoclavine) in shaker cultures has been reported;
in fermentors the production reaches 2836 mg L-1 (2322 mg L-1 of elymoclavine).
The concentration of undesirable of glucans can be decreased by the addition of
0.4–0.5 g L-1 of sodium phenobarbitale from the original 38.4–42.2 g L-1 to 0–11
g L-1 (Øeháèek and Rylko 1985). An addition of barbiturates into a medium,
influencing cytochrome P-450, was also described by Trinn et al. (1983) but
without relationship to glucan suppression. Processes with feedback inhibition of
glucan-synthesizing enzymes induced by addition of glucans into cultivation
media during inoculation were proposed (Kybal, personal communication). The
use of specific production strains with lowered or eliminated glucan production,
such as Claviceps purpurea CP 7/5/35 CC-2/1985 (Øeháèek et al., 1984a), seems
to be economically optimal. This strain produces a mixture of 10–30% of
elymoclavine, 65–90% of agroclavine and 1–5% of chanoclavine—I. However,
the employment of the strain Claviceps purpurea 88-EP/1988 (Køen et al., 1988c)
is more advantageous since the strain produces nearly 2500 mg L-1 of elymoclavine
and this alkaloid represents almost 90% of total alkaloids. The use of two
inoculation stages for clavine producers is suitable not only for elimination of
glucan production but also for reaching an optimum physiological state for
maximal biosynthesis of the alkaloids. The production of alkaloids by the strain
C. fusiformis W1 is decreased by 11.4–57.8% (Malinka et al., 1986) when a
single-stage inoculum is used.

An ihibition effect of phosphate ions upon biosynthesis of alkaloids plays an
important role and a positive effect of phosphate deficiency was described already
by Windisch and Bronn (1960). The problem consists in the fact that phosphate
is necessary for biomass growth; it is therefore necessary to find an optimal
ratio between biomass growth (and proliferation of cells able to produce
alkaloids) and the alkaloid synthesis rate. Most of the processes described here
employ a low content of phosphate in production media combined with the use
of a dense inoculum. Some production strains are marked by a higher resistance
of alkaloid biosynthesis to phosphates (Øeháèek et al., 1984a). This problem
was solved in a particular way in the patent of Bøemek et al. (1989) by using
gradually utilized hexaamidotriphosphazene as a phosphate source and at the
same time as a supplementary source of nitrogen.

Køen et al. (1989b) described a process of production of fructosides of
elymoclavine, namely elymoclavine-O-ß-D-fructofuranoside (Floss et al., 1967)
and elymoclavine-O-ß-D-fructofuranosyl-(2→1)-O-ß-D-fructofuranoside
(Flieger et al., 1989d). The efficiency of glycosylation fluctuated between 10
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and 62% . The strain C. purpurea 88-EP-47 was selected for the preparation of
fructosides of elymoclavine (Køen et al., 1989c); during fermentation this strain
produces fructosides in a concentration of 920 mg L-1 while the concentration
of the total alkaloids reached 2800 mg L-1. Due to the high glycosylation activity
the strain could be used for production of fructosides of alkaloids added to
cultures (Køen et al., 1989b). Glycosides of ergot alkaloids exhibit interesting
physiological effects and can be also used as substrates for the preparation of
semisynthetic derivatives.

12.4.2. Production of 6, 7-secoergolenes

Besides agroclavine and elymoclavine, also other clavine alkaloids can be used
for the preparation of certain semisynthetic derivatives. Although no derivatives
prepared by modification of the clavine molecule are used in therapy, some
preparation procedures yielding such clavine alkaloids are protected by patents.
Among 6, 7-secoergolenes, i.e., alkaloids with an open ring D of the ergoline
structure, chanoclavine-I and chanoclavine-I aldehyde have been patented.

Production processes employing specific production strains are also protected
by patents. Thus the production of chanoclavine-I or a mixture of chanoclavine-
I and chanoclavine-I aldehyde has been described because all chanoclavine-I
aldehyde represents a suitable substrate for subsequent semisynthesis. Wilke
and Weber (1985b) described a method of chanoclavine manufacture with the
strain C. purpurea DSM 2837 giving 390 mg L-1 of the alkaloid. Baumert et al.
(1979a) reported on the use of the strain C. purpurea IBP 180, ZIMET PA 138,
in which the total production of alkaloids was 500–600 mg L-1 and this amount
comprised 80% of chanoclavine-I and 20% of chanoclavine-I aldehyde. Maier
et al. (1980a, b) and Baumert and Gröger (1982) described another strain,
denoted Pepty 695/ch, which produced chanoclavine-I and chanoclavine-I
aldehyde; these secoergolenes were produced in a concentration of 300–350
mg L-1 in a ratio of 3:1 (Erge et al., 1984). A substantially higher production
was mentioned by Øeháèek et al. (1986a) for the strain C. purpurea 59 CC5/86
selected from the parent strain C. purpurea 129 (Pazoutová et al., 1987a) which
produced as much as 3000–6000 g L-1 of total alkaloids, composed of 40–60%
chanoclavine-I, 20–30% chanoclavine-I aldehyde, 10–15% elymoclavine and
5–10% agroclavine. Besides the patent literature, Gröger (1965) described the
strain C. paspali Li 342/SE 60 producing 400 mg L-1 of alkaloids, 40% of
which was chanoclavine. Chanoclavine-I was isolated not only from fungi of
the genus Claviceps (Abe et al., 1959; Agurell and Ramstad, 1965; Hofmann et
al., 1957; Stauffacher and Tscherter, 1964), but also from other fungi—
Penicillium concavo-rugulosum (Abe et al., 1969), Aspergillus fumigatus
(Yamano et al., 1962) and Hypornyces aurantius (Yamatoya and Yamamoto,
1983).
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12.4.3. Production of Ergolines

Processes for the production of festuclavine and epoxyagroclavine I from the
group of ergolines are described in patents. Festuclavine was isolated from
cultures of Aspergillus fumigatus and from sclerotia of Claviceps gigantea
(Agurell and Ramstad, 1965). In the patent of Wilke and Weber (1985a) a
method of production of festuclavine is described using the production strain
C. paspali 2338. During a 7–9-day cultivation the concentration of festuclavine
reached 2280 mg L-1. Epoxyagroclavine I has so far been found only as a
metabolite of Penicillium corylophilum (Kozlovsky et al., 1982) and process of
its production is patented (Kozlovsky et al., 1979).

12.4.4. Production of ∆∆∆∆∆9,10-Ergolenes

Lysergol as well as isolysergol from the group of ∆9,10-ergolenes can be used as
suitable substrates for the production of semisynthetic derivatives. Lysergol,
together with lysergene and lysergine were isolated from the saprophytic fungi
Claviceps spp. originating from ergot parasitizing on Elymus mollis (Abe et al.,
1961). Isolysergol was isolated from the saprophytic cultures of Claviceps sp.
47 A derived from ergot parasitizing on Pennisetum typhoideum (Agurell, 1966).

12.5. LYSERGIC ACID, ITS SIMPLE DERIVATIVES AND PASPALIC ACID

This group of ergot alkaloids encompasses both compounds directly applicable
in therapy (ergometrine) and compounds, which can be employed for the
production of semisynthetic alkaloids (lysergic acid, ergine, lysergic acid α-
hydroxyethylamide and their isomers, paspalic acid).

Lysergic acid and paspalic acid were isolated in 1964 from cultures of C.
paspali (Kobel et al., 1964) and in 1966 from cultures of C. purpurea (Castagnoli
and Mantle, 1966). Ergine (Arcamone et al., 1961; Kobel et al., 1964) and
lysergic acid α-hydroxyethylamide (Arcamone et al., 1960; Flieger et al., 1982)
were also isolated from the cultures of C. paspali. Ergometrine (ergonovine)
was isolated from both C. purpurea (Stoll, 1952) and C. paspali (Kobel et al.,
1964).

Analogously to clavine alkaloids, a number of ergolene-production strains
has been isolated. Strains of the genus Claviceps for direct biosynthesis of lysergic
acid, paspalic acid and lysergic acid α-hydroxyethylamide were obviously selected
only from the species Claviceps paspali that grows on grasses of the genus
Paspalum in diverse parts of the world, e.g. strains C. paspali F-140 (ATCC
13895), F-S 13/1 (ATCC 13892), F-237 (ATCC 13893), F-240 (ATCC 13894)
(Chain et al., 1960), NRRL 3027, NRRL 3166 (Rutschmann and Kobel, 1963b),
NRRL 3080, NRRL 3167 (Kobel and Schreier, 1966; Rutschmann et al., 1963),
ATCC 14988 (Tyler, 1963), C-60 and its derivatives (Mary et al., 1965), FA
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CCM F-731 (Øièicová et al., 1982b), CP 2505, YU 6 (Harazim et al., 1986),
CCM 8061 (Flieger et al., 1989a), CCM 8063 (Harazim et al., 1989), CCM
8176 (Satke et al., 1994).

The sporogenic strain C. paspali MG-6 played for ergolenes a similar role as
the strain Claviceps fusiformis SD-58 for clavine alkaloids—the basic knowledge
of physiology and biochemistry of formation of simple derivatives of lysergic
acid was gained using this organism (Bumbová-Linhartová et al., 1991;
Linhartová et al., 1988; Øeháèek and Malik, 1971; Øeháèek et al., 1971; Rylko
et al., 1988d). The same holds for the strains C. paspali 31 (Rosazza et al.,
1967) and L-52, identical with the strain ATCC 13892 (Soèiè et al., 1986). Mantle
(1969) described the production of a mixture of lysergic and paspalic acids by
saprophytic strains, not selected by mutagenesis, isolated from ergotoxine
containing sclerotia of C. purpurea. Philippi and Eich (1984) demonstrated the
bioconversion of elymoclavine to lysergic acid by the strain C. paspali SO 70/5/
2, Maier et al. (1988b) reported on an analogous bioconversion using a
microsomal fraction of the ergopeptine producer C. purpurea Pepty 695/S. Besides
the genus Claviceps formation of lysergic acid and its derivatives has been reported
in a number of strains of different species of the genus Aspergillus (A. clavatus,
A. repens, A. umbrosus, A. fumigatus, A. caespitosus, A. nidulans, A. ustus, A.
flavipes, A. versicolor, A. sydowi, A. humicola, A. terreus, A. niveus, A. carneus,
A. niger, A. phoenicus) (Siegle and Brunner, 1963).

12.5.1. Production of Simple Derivatives of Lysergic Acid

Production of amides of lysergic acid is described more often than the production
of the acid itself. These amides are isomers of lysergic acid α-hydroxyethylamide;
lysergic acid can be prepared from them by bioconversion. Amici et al. (1963)
described bioconversion with 95% efficiency in cultures of Claviceps purpurea
without further specification. Some production strains are very sensitive to
surplus iron ions (Chain et al., 1960; Øièicová et al., 1982b) or they require ions of
iron and zinc, and sometimes also other inorganic ions, in defined proportions
(Mary et al., 1965; Rutschmann and Kobel, 1963b). The process reported by
Chain et al. (1960) needs so-called virulentation of the strain in a rye embryo to
get sufficient production. Concentrations between 450 and 1600 mg L–1 are reached
during the submerged cultivation. Iron ions did not interfere with the process
described by Tyler (1963). The procedure according to Øièicová et al. (1982a)
employed the asporogenic production strain C. paspali FA CCM F-731; that
brought problems with the preparation of a standard inoculum for the production
phase. The strain produced over 2000 mg L–1 of alkaloids from which 80%
was lysergic acid α-hydroxyethylamide. Øièicová et al. (1981, 1986) also
reported on the strain C. paspali F 2056 that produced nearly 2000 mg L–1 of
alkaloids with the same proportion of lysergic acid α-hydroxyethylamide.
Production of max. 2000 mg L–1 of simple derivatives of lysergic acid was
described using the strain C. paspali ATCC 13892 and optimized cultivation
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conditions (Pertot et al., 1984). Rutschmann and Kobel (1963b) reported that the
strain C. paspali NRRL 3027 had formed over 1000 mg L–1 of alkaloids. The
concentration of total alkaloids in a shaker culture of the strain NRRL 3166
reached as much as 2210 mg L–1 from which 80% was formed by amides of
lysergic and isolysergic acids; in a fermentor the concentration was 1820 mg L–1,

with 87% of amides. Harazim et al. (1986) dealt with the optimization of the
inoculation phase of lysergic acid α-hydroxyethylamide production. The
asporogenic strain C. paspali CP 2505 and the sporogenic one YU 6, selected from
natural material of a different geographic origin, were found to have the same
requirements for optimal media composition. Pertot et al. (1990) reported the
strain C. paspali L-52 which produced as much as 2647 mg L–1 of a mixture of
ergometrine, lysergic acid amide and lysergic acid α-hydroxyethylamide, and
from it selected a mutant CP 2 with a totally blocked synthesis of ergometrine and
with the production of as much as 1552 mg L–1 of lysergic acid derivatives. Flieger
et al. (1989a) and Harazim et al. (1989) described the production strains of C.
paspali mentioned earlier in connection with biotransformation of agroclavine to
elymoclavine. The strain CCM 8061 (Flieger et al., 1989a) produced 1220 mg L–1 of
simple derivatives of lysergic acid; at the same time it showed a high activity of
bioconversion (almost 95%) of clavine alkaloids to simple derivatives. Also, by
adding clavines the actual biosynthesis of lysergic acid derivatives was increased
by 33.5%. The strain could also be used in the immobilized form for
semicontinuous production of lysergic acid derivatives by de novo biosynthesis
and/or by clavine conversion. The strain CCM 8063 (Harazim et al., 1989) is
characteristic by the production of lysergic acid α-hydroxyethylamide in
concentrations of up to 2200 mg L–1. When clavine alkaloids were added to the
medium nearly, 5070 mg L–1 of lysergic acid α-hydroxyethylamide was produced
as a consequence of their concurrent conversion. A semicontinuous process was
also described using cells of this strain entrapped in alginate. Procedures reported
for these two strains were later worked out to produce simple derivatives of lysergic
acid, first of all its α-hydroxyethylamide, ergometrine and partially also ergine, by
means of aggressive bioconversion of clavine alkaloids (Flieger et al., 1989b);
induction of lysergic acid derivatives took place at the same time. In a batch
cultivation, the concentration of lysergic acid derivatives reached almost 5400 mg
L–1 while in a large scale industrial fermentor the concentration was 2920 mg
L–1. The concentration of total alkaloids in cultures of the strain C. paspali
CCM 8062 after clavine conversion reached 2130 mg L–1; out of this amount 78%
was ergometrine, 11% ergine and 11% lysergic acid
α-hydroxyethylamide. A mixed cultivation of the strain C. purpurea CCM F-733
(producer of clavine alkaloids) and C. paspali CCM 8061 yielded 4890 mg L–1

of alkaloids during a fortnight cultivation; alkaloids suitable for semisynthesis
made up 97.3% (lysergic acid α-hydroxyethylamide 73%, elymoclavine
24.3%). A mixture of lysergic acid α-hydroxyethylamide and ergine was also
produced by the strain C. paspali MG-6. Derivatives of lysergic and paspalic
acids—8-hydroxyergine and 8-hydroxyerginine (Flieger et al., 1989c), and
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10-hydroxy-cis- and 10-hydroxy-trans-paspalic acid amide (Flieger et al., 1993)—
were isolated from the culture medium of this strain in the post-production phase.
The bioconversion of elymoclavine to ergine by the strain C. paspali LI 189 + was
described by Mothes et al. (1962). Matošiæ et al. (1988a, b) used an immobilized
strain of C. paspali which produced a mixture of lysergic acid α-
hydroxyethylamide and ergometrine. He also tried to increase the production by
means of surfactants. During a 60-day cultivation with six medium replacements
the total production of alkaloids reached 8290 mg L–1.

12.5.2. Production of Ergometrine

Ergometrine was isolated from both Claviceps purpurea (Stoll, 1952) and C.
paspali (Kobel et al., 1964) cultures. There is a number of described strains of
the both species that produce ergometrine: C. paspali CCM 8062 (Flieger et al.,
1989b), NRRL 3081, NRRL 3082 (Rutschmann and Kobel, 1963a), ATCC
13892 (Gaberc-Porekar et al., 1987), C. paspali without additional marking,
isolated from Paspalum commersonii (Janardhan and Husain, 1984), C.
purpurea IMET PA 130 (ZIMET 43769), IMET PA 135 (ZIMET 43695) (Borowski
et al., 1976; Volzke et al., 1985), NCAIM 001106 (Zalai et al., 1990), OKI 22/
1963 (Molnár et al., 1964; Udvardy-Nagy, I. et al., 1964), OKI 620 125 (Molnár
and Tétényi, 1962), Pepty 695 (Baumert and Gröger 1982, Erge et al., 1972),
PRL 1578 (ATCC 14934) (Taber and Vining, 1958). Ergometrine is formed
biosynthetically via the intermediate lysergylalanine, the common precursor of
ergoptinyle (Øeháèek and Sajdl, 1990). Claviceps purpurea which, unlike C.
paspali, is able to synthesize ergopeptine alkaloids, normally produces ergometrine
together with a certain amount of ergopeptines. Both components are easily
separable and most of ergopeptines find application in therapy.

Stoll et al. (1953) described a surface cultivation of Claviceps purpurea during
which low amounts of ergometrine and ergotamine are formed in strict
dependence on the concentration of iron and zinc ions, similarly as in lysergic
acid amide production (Rutschmann and Kobel, 1963b). Windisch and Bronn
(1960) reported on cultivations in which production of clavines, ergometrine
and ergopeptines was induced by anaerobic conditions elicited by respiration
inhibition. The process could hardly be implemented on the industrial scale,
because of a very low production and other factors. Later, more efficient
processes were developed having with the aid of better production strains.
Molnár et al. (1964) described the production of a mixture of ergometrine and
ergotoxine, rich in ergocristine, by submerged as well as surface cultivation
yielding a minimum concentration of alkaloids 300 mg L–1. A patent of Molnár
and Tétényi (1962) described a production of a mixture of ergometrine,
ergokryptine and ergocornine during both stationary and submerged
cultivations. In the surface cultivation, the concentration of alkaloids in the
mycelium was 0.6%, 30% of which was ergometrine, in the submerged one the
total alkaloid production was 480 mg L–1. The process according to Rutschmann
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and Kobel (1963a) made use of the production strains C. paspali NRRL 3081 and
3082; they formed higher concentrations of a product without ergopeptines.
Gaberc-Porekar et al. (1987) published data on the asporogenic strain C. paspali
ATCC 13892 that produced 1200 mg L–1 of alkaloids consisting from 50–60% by
ergometrine and from 25–30% by lysergic acid α-hydroxyethylamide. Using a
mutagenic effect of gamma irradiation, they selected from this strain a daughter
one able to form conidia. In the process of Zalai et al. (1990) the production
strain C. purpurea NCAIM 001106 was selected by mutagenesis of protoplasts.
The produced mixture of alkaloids contained 1100 mg L–1 of ergometrine, 450
mg L–1 of ergocornine and 600 mg L–1 of ergokryptine. Borowski et al. (1976)
described submerged cultivations of the strain C. purpurea IMET PA 130 where
the total alkaloid concentrations reached 2430–2460 mg L–1, out of which the
ergotoxine group ergopeptines comprised 1150–1300 mg L–1 and ergometrine
340–550 mg L–1. The procedures were further elaborated by Volzke et al. (1985)
who used the strains IMET PA 130 (ZIMET 43769) and IMET PA 135 (ZIMET
43695); by changing the limitation and/or nutrient sources they were able to
change the proportions of ergometrine and individual alkaloids of the ergotoxine
group. The total concentration of alkaloids was as high as 4000 mg L–1; under
different cultivation regimes ergometrine was produced in concentrations
between 420 and 800 mg L–1. The maximal proportion of ergometrine was reached
when urea was used together with partial limitation by the phosphorus source,
oxygen saturation was kept at 48–86% and pH under 7. The process described by
Flieger et al. (1989b), in which the strain C. paspali CCM 8062 produced 1660
mg L–1 of ergometrine and small amounts of ergine and lysergic acid amide when
clavine alkaloids were added as precursors, has been mentioned earlier. The
paragraph concerning clavine alkaloids also report on the production of
ergometrine mixed with clavine alkaloids by immobilized cells of the strain C.
purpurea CBS 164.59 (Kopp, 1987).

12.5.3. Production of Paspalic Acid

Paspalic acid is another suitable substrate for preparation of semisynthetic
derivatives. The patent literature contains description of its production by strains
C. paspali NRRL 3080, and NRRL 3167 (Kobel and Schreier, 1966,
Rutschmann et al., 1963) and C. paspali CCM 8176 (Satke et al., 1994). The
strain NRRL 3167 formed 3330 mg L–1 of total alkaloids, out of which paspalic
acid represented 89%. The strain CCM 8176, in dependence on sugar and organic
acid components used, produced as much as 7927 mg L–1 of total alkaloids.
Paspalic acid formed 54.4% (4257 mg L–1) and the rest was formed by isopaspalic,
lysergic and isolysergic acids. A cell-free extract of the strain C. purpurea PCCE1
was able to convert elymoclavine to paspalic acid with a 95% efficiency (Kim
and Anderson, 1982; Kim et al., 1983).
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12.6. PRODUCTION OF ERGOPEPTINES

12.6.1. Production of Ergotamine Group Alkaloids

So far, ergotamine is the only natural alkaloid from the ergotamine group of
ergopeptines which has found a therapeutical use. It was detected only in the
strain Claviceps purpurea (Flieger et al., 1997; Stoll, 1952). The first isolation
from saprophytic mycelia was shown by Kybal and Starý (1958). The
fermentative production of ergotamine was performed with many strains—C.
purpurea IBP 74, IMET PA 135 (Baumert et al., 1979b, c), JAP 471 (Erge et al.,
1984; Schmauder and Gröger, 1986), JAP 471/1 (Maier et al., 1983), I.M.I.
104437 (ATCC 15383) (Amici et al., 1964), 275 F.I. (Amici et al., 1966, 1967a;
Crespi-Perellino et al., 1981; Floss et al., 1971b), F.I. 32/17 (ATCC 20102)
(Amici et al., 1968; Keller et al., 1980) and its derived strain 1029 (Keller et al.,
1988; Lohmeyr and Sander, 1993); L-4 (ATCC 20103) (Komel et al., 1985),
CP II (Sarkisova and Smirnova, 1984), 312-A (Sarkisova, 1990; Ustyuzhanina
et al., 1991).

In addition to the process mentioned earlier, which produces small amounts
of ergotamines (Windisch and Bronn, 1960), other processes were successively
developed with higher industrial utility. Kybal et al. (1960) described both surface
and submerged cultivation of non-specified strains Claviceps purpurea. In the
surface cultivation the yield of ergotamine was 0.14% in dry biomass, while in
the submerged one 0.07% . Amici et al. (1964) working with the strain I.M.I.
104437, obtained as much as 1300 mg L–1 of ergotamine. In their experiments
with the strain 275 F.I., which produced 1–150 mg L–1 of alkaloids, Amici et al.,
found correlation between the production capability of alkaloids and lipids
(Amici et al., 1967a). Procedures described by Amici et al. (1968) with the
strain F.I. 32/17 served to increase the production of ergotamine and α-
ergokryptine in shaker cultures up to 2000 mg L–1 with an approximately equal
proportion of the two components; in a fermentor the production reached 1200
mg L–1. Baumert et al. (1979b) described, e.g., a procedure of selection of the
production strain IBP 47, IMET PA 135; Baumert et al. (1979c) developed
cultivation processes for this strain. The total alkaloid production reached 900–
1500 mg L–1; the total alkaloid mass was composed of 75–80% ergotamine, 10–
15% chanoclavine, 5–6% ergometrine, 5% ergokryptine, a maximum of 4%
ergosine and traces of other clavines. The strain JAP 471 gave about 800 mg
L–1 of alkaloids out of which 70% was ergotamine and 30% was clavine alkaloids
(Erge et al., 1984). In the submersion mycelium of the strain C. purpurea II, the
content of alkaloids reached 0.4% of dry mass (Sarkisova and Smirnova, 1984).
The strain L-4 (ATCC 20103) produced about 1500 mg L–1 of ergotamine (Komel
et al., 1985).

Long-term production of a mixture of ergotamine and ergokryptine by
immobilized cells was studied by Dierkes et al. (1993) in semicontinuous and
continuous systems. When cells of the strain C. purpurea 1029/N5 entrapped
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in alginate were cultivated in a 500 mL bubble column reactor for 30 days,
alkaloid productivity was 17–40 mg L–1 per day.

Ergotamine producing strains were also used in different studies as model
organisms for research on various aspects of Claviceps biology and alkaloid
biosyntesis, e.g. the original parasitic ergotamine strain C. purpurea Pla-4 (Majer
et al., 1967; Øeháèek and Kozová, 1975), or the strain PCCE1 (Quigley and
Floss, 1981).

Ergosine, another representative of the ergotamine group, exerts very similar
pharmacological effects as ergotamine. In spite of the fact that it has not yet
been used in therapy, processes of its production are described in the patent
literature. Amici et al. (1969) described a concurrent production of ergocornine
and ergosine by the strain C. purpurea F.I. 43/14, ATCC 20106, when the
production of total alkaloids was 950–1100 mg L–1 and ergosine content 40–
45% . Gröger et al. (1977) and Maier et al. (1981) employed the strains C.
purpurea MUT 168 and MUT 168/2 for both surface and submerged cultivation
with a production of 300–350 mg L-l of alkaloids, containing 90% of ergosine
and ergosinine together with 10% of clavine alkaloids, or 80% of ergosine and
20% of chanoclavine-I, respectively. Baumert et al. (1979b, 1980) described
the selection of the production strain IBP 179, IMET PA 136 and its submerged
cultivation. The concentration of total alkaloids was in this case 900–1300 mg
L–1, with 80–90% of ergosine and ergosinine. The ergosine strain C. purpurea
MUT 170 (Baumert and Gröger, 1982; Schmauder and Gröger, 1986) produced
a mixture of ergosine and clavine alkaloids in amounts of about 700 mg L–1

(Erge et al., 1984).
Dihydroergopeptines (dihydroergotamine, dihydroergocristine etc.) which

are produced from common ergopeptines by chemical methods have significant
therapeutic use. The only dihydroergopeptine found in nature is dihydroergosine
(Mantle and Waight, 1968) isolated from Claviceps africana (formerly Sphacelia
sorghi); its biosynthetic precursors are dihydroelymoclavine and dihydrolysergic
acid (Barrow et al., 1974). These findings opened the possibility of fermentative
production of dihydroergopeptines by common strains when these precursors
were used.

12.6.2. Production of Alkaloids of the Ergotoxine Series

Ergocristine, ergocornine, α-ergokryptine and ß-ergokryptine from alkaloids of
this group are used in therapy. As drugs they are used both separately (e.g.
ergocristine) and in mixtures (ergocornine, α- and ß-ergokryptine), with the native
molecule or hydrogenated. All these alkaloids were isolated from the species C.
purpurea (Schlientz et al., 1968; Stoll, 1952). Besides the above mentioned
production strain Hypomyces aurantus (Yamatoya and Yamamoto, 1983) and
the only one described production strain Claviceps paspali (Wilke and
Weber, 1984), all the strains mentioned in the literature originated from
the species C. purpurea: CCM F-508 (Strnadová and Kybal, 1976), CCM
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F-725 (Strnadová et al., 1981), CCM 8043 (Strnadová et al., 1986), IBP 84,
ZIMET 43768 (Schumann et al., 1986), IMET PA 130, ZIMET 43769 (Ludwigs
et al., 1985; Volzke et al., 1985), DH 82, ZIMET 43695 (Erge et al., 1982), F.I.
101a (Amici et al., 1967b), F.I. 43/14, ATCC 20106 (Amici et al., 1969), F.I.
S40, ATCC 20103 (Minghetti et al., 1967), F.I. 7374 (Bianchi et al., 1974), Exy
20, Ech K 420 (Kobel and Sanglier, 1976) Ecc 93 (Keller et al., 1988), MNG
022, MNG 0083, MNG 00186 (Udvardy-Nagy et al., 1981; Wack et al., 1981),
OKI 88/1972 (Richter Gedeon V.G., 1973), 231 F.I., ATCC 20106 (Bianchi et
al., 1976, Crespi-Perellino et al., 1987, 1992, 1993), 563 E (Milièiæ et al., 1984),
L–16 (Puc et al., 1987), L–17 (Didek-Brumec et al., 1991a, b; Gaberc-Porekar et
al., 1990; Milièiæ et al., 1987, 1989; Soèiè et al., 1985), L–18 (Didek-Brumec et
al., 1988), Pepty 695 (Maier et al., 1971; Schmauder and Gröger, 1986), Pepty
695/S (Erge et al., 1984; Maier et al., 1980b, 1988b), 1029 (Lohmeyer and
Sander, 1993; Lohmeyer et al., 1990).

The original procedures elaborated for fermentation production of ergotoxine
alkaloids were not introduced into practice both for practical reasons, as, e.g., in
the patent of Windisch and Bronn (1960), and for economic ones, given by the
very low productivity. For example, surface cultivation was developed producing
0.18 g of total ergotoxine alkaloids per 100 g of dry mass with the ergocristine/
ergocornine/ergokryptine ratio of 3:1:2 (Kybal et al., 1960). At that time no
technological process was available for the industrial application of this cultivation
but later the process of cultivation in plastic bags was developed (Kybal and
Vlèek, 1976; Vlèek and Kybal, 1974) and the high-producing strains C. purpurea
CCM F-725 (Strnadová et al., 1981) and CCM 8043 (Strnadová et al., 1986)
were selected. On a rich medium the strain C. purpurea CCM F-725 formed
mycelia containing 1.5% of alkaloids per dry mass. This product contained
ergocornine, α-ergokryptine and ß-ergokryptine in a 6:5:1 ratio, small amounts
of ergometrine and traces of ergosine, ergocristine, ergotamine and ergoxine.
Later the strain C. purpurea CCM 8043 was selected which produced as much as
3.5% alkaloids per mycelia dry mass; the mixture of alkaloids contained α-
ergokryptine, ergocornine, ß-ergokryptine, ergometrine and traces of ergosine.
From the end of the 1970s pharmacopoeias requirements became more strict as
regards the mutual proportion of α- and ß-ergokryptine in ergotoxine substances
and drugs. The mutual ratio of biologically synthesized alkaloids of the ergotine
group can be influenced by the addition of amino acids that form the peptidic
moiety of the ergopeptine structure (Kobel and Sanglier 1978). Kybal et al. (1979)
described a surface cultivation giving a controlled proportion of ergocornine, α-
ergokryptine and ß-ergokryptine. Threonine, the biosynthetic precursor of
isoleucine, was also used besides the amino acids forming the peptidic part of
ergopeptines. Experiments with additions of threonine, leucine and isoleucine
into media provided 0.51–0.86% alkaloids per dry mass, with the ratio of
ergokryptines to ergocornine 1.5–3:1 and α-ergokryptine to ß-ergokryptine 1:5–
100:1. When precursors were employed, three new alkaloids were isolated—5´-
epi-ß-ergokryptine from the ergopeptine group, and ß-ergokryptame and ß,
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ß-ergoanname (Flieger et al., 1984). The procedure was further optimized by
using the economically more favourable threonine; as a result, production strains
D3–18 and D2–B1 were able to produce mycelia containing the precise proportion
of ergocornine and ergokryptine components in ergotoxine preparations required
by the Pharmacopoeia (Malinka et al., 1987). A process for the controlled
biosynthesis of ergocornine, a-ergokryptine and ß-ergokryptine was also
elaborated for submerged cultivation (Udvardy-Nagy et al., 1981). Production
strains MNG 0022, MNG 0083 a MNG 00186 provided 80–200 mg L–1 of
ergocornine, 15–150 mg L–1 of a-ergokryptine, nearly 80–100 mg L–1 of ß-
ergokryptine and 150–180 mg L–1 of a mixture of ergocorninine and
ergokryptinines. A broader spectrum of compounds was used as precursors—
besides threonine and isoleucine also homoserine, homocysteine, methionine and
α-ketobutyric acid. Wack et al. (1981) reported on the use of valine and isoleucine
as precursors in the cultivation of strain MNG 00186 also. The precursor addition
enhanced the original production of 150 mg L–1 of ergocornine, 40 mg L–1 of α-
ergokryptine and 90 mg L–1 of ß-ergokryptine to 320 mg L–1 of ergocornine, 60
mg L–1 of α-ergokryptine and 160 mg L–1 of ß-ergokryptine. Increased production
of a-ergokryptine using leucine as a precursor in cultures of C. purpurea strains
IMET PA 130 or ZIMET PA 43769 was described by Ludwigs et al. (1985).
When 2–5 g L–1 of L-leucine was added to the medium, the concentration of
ergotoxine alkaloids reached 900–1200 mg L–1 or 1400–2500 mg L–1, with 65–
85% of α-ergokryptine. Puc et al. (1987) described the use of valine as a precursor
with strain L–16. Depending on the amount of valine added into a submerged
culture of the strain producing 1800 mg L–1 of total alkaloids, with a proportion
of ergocornine to ergokryptines 1:2, this proportion was changed up to 4.5:1.
Another method of production control, in addition to leucine precursoring, is
described in the patent of Volzke et al. (1985). The production of ergocornine by
C. purpurea strains IMET PA 130 and ZIMET 43769 can be supported by partial
phosphate limitation and by continuous addition of ammonium ions; production
of α-ergokryptine can be increased by simultaneous addition of urea or ammonium
salts and phosphate. In addition to these procedures with directed precursoring, a
number of patents describes the production of ergocornine or ergokryptines without
precursors. The production strain C. purpurea IBP 84, ZIMET 43768 used for
production of a mixture of a-ergokryptine and ergosine formed 700–1400 mg L–

1 of total alkaloids with 80% of a-ergokryptine and 20% of ergosine (Schumann
et al., 1986). According to the patent of Amici et al. (1967b), the production of
ergokryptine in cultures of the strain C. purpurea F.I. 101a reached 1100–1500
mg L–1. Production of a mixture of ergokryptine and ergotamine was mentioned
earlier (Amici et al., 1968), and so was the production of ergokryptinine,
ergokryptine and other alkaloids by a fungi of the genus Hypomyces (Yamatoya
and Yamamoto, 1983). Wilke and Weber (1984) reported the production of 525
mg L–1 of α-ergokryptine with the asporogenic strain C. paspali DSM 2836.
Patent of Richter Gedeon V.G. (1973) described the production of a mixture of
ergocornine and α-ergokryptine; when the strain C. purpurea OKI 88/1972 was
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employed, 1046–1246 mg L–1 of total alkaloids were produced from which a
mixture of ergocornine and ergokryptine represented 646 mg L–1 and the
concentration of ergometrine was 202–310 mg L–1. A mixture of ergocornine and
ergokryptine was also the main component of the 2000 mg L–1 alkaloids which
were produced by the sporogenic strain L-17 bred by combined mutagenesis and
selection from an originally parasitic strain (Didek-Brumec et al., 1991a, b). The
production of a mixture of ergocornine and ergosine was reported by Amici et al.
(1969). The strain C. purpurea F.I. 43/14 ATCC 20106 formed in different
cultivation media 950–110 mg L–1 of a mixture containing 40–45% of ergosine
and 55–60% of ergocornine. Special strains for ß-ergokryptine production are
referred to by Bianchi et al. (1974, 1976). The strains C. purpurea 231 F.I. and
F.I. 7374 produced the total amount 1200 mg L–1 of ergopeptines with 30% of
ergokryptine. The patent of Kobel and Sanglier (1976) described the production
of ergocornine and ergokryptine by the strain C. purpurea Exy 20, and the
production of ergocristine by the strain C. purpurea Ech K 420; a so called pre-
culture was used in the process. The cultivation production of total ergopeptines
was 770 mg L–1 from which ergokryptine and ergokryptinine comprised 203 mg
L–1, ergocornine and ergocorninine 200 mg L–1, ergocristine and ergocristinine
206 mg L–1 and other alkaloids 170 mg L–1. The fermentative production of
ergocristine was described in patent of Minghetti et al. (1967). The process
employed the production strain C. purpurea F.I. S40 (ATCC 20103) which, when
cultivated in a fermentor, gave 920 mg L–1 of ergocristine. Another process
described by Erge et al. (1982) employed the strain C. purpurea DH 82, ZIMET
43695; in a fermentor the production of alkaloids reached 600–1000 mg L–1 of
which ergocristine represented 400–550 mg L–1. Didek-Brumec et al. (1988) referred
to the asporogenic strain L-18 that formed 2000 mg L–1 of ergocristine. The
production about l000–1200 mg L–1 of total alkaloids by the strain Pepty 695/S,
which contained 50–60% of ergotoxines composed of a mixture of ergocornine,
ergokryptine and a 20% of ergometrine, was reported by Maier et al. (1980b,
1988b) and Erge et al. (1984). The original parent strain Pepty 695 showed the
total alkaloids production of about 400–450 mg L–1, with 50% of ergotoxines
(ergocornine to ergokryptine ratio 3:1) and 15–20% of ergometrine (Floss et al.,
1971 a). Gaberc-Porekar et al. (1990) used the strain C. purpurea L–17 to produce
2400 mg L–1 of total ergotoxine alkaloids, mostly ergocornine and ergokryptine.
In the same study, devoted to carbohydrate metabolism, the hexose monophosphate
shunt metabolizing glucose during the vegetative phase of fermentation was shown
to be replaced by glycolysis during the period of increasing production of
alkaloids. This strain served for further research on biochemistry and physiology
of high-producing strains, e.g. the correlation between the intermediary metabolism
and secondary metabolite synthesis (Gaberc-Porekar et al., 1992a). In the case of
ergopeptines, the further direction of production processes development—
immobilization of producers and possible continualization—is only at its
beginning (Lohmeyer and Sander, 1993).
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12.6.3. Derivatives and Analoga of Ergopeptines

The fungus Claviceps purpurea is able to incorporate the amino acids, present in
the medium, into the peptidic moiety of ergopeptines and to perform similar
reaction also with their precursors. This fact was used in a controlled
fermentation with the directed application of precursors, as mentioned in
previous paragraphs. C. purpurea is also able to incorporate a number of other
different amino acids and their analoga into the peptidic moiety (Beacco et al.,
1978). Thus ergobutine (from the group of ergoxines) and ergobutyrine (from
the group of ergotoxines) were isolated from the saprophytic cultures of the
strain C. purpurea 231 F.I. (Bianchi et al., 1982). 5´-Epi-ß-ergokryptine from the
ergotoxine group, ß-ergokryptame from the ergotaxame group and ß, ß-
ergoanname from the ergoanname group, isolated from saprophytic surface
cultures of the strain C. purpurea D-3–18 on addition of different stereomers of
isoleucine and threonine as precursors (Flieger et al., 1984), were mentioned
earlier. Addition of L-norvaline as a precursor into cultures of C. purpurea 231
F.I. yielded unnatural ergopeptines—ergorine, ergonorine and ergonornorine
(Crespi-Perellino et al., 1992). These capabilities of C. purpurea were used in the
development of processes for preparation of ergopeptines analoga. The procedure
according to Beacco et al. (1977) employed the specially selected mutant strains
C. purpurea ATCC 15383, ATCC 20103 and ATCC 20019, dependent upon
different nonhydroxylated amino acids—leucine, phenylalanine, halogenated
phenylalanine, thienylalanine, pyrazolylalanine, furylalanine, pyridylalanine, etc.
A number of derivatives of ergopeptine with the adrenolytic effect (blockade of α-
receptors), e.g. 5´-debenzyl-5´-p-chlorobenzyl-dihydroergocristine or 5´-debenzyl-
5´-p-fluorobenzyl-ergotamine, was obtained. The process proposed by Baumert et
al. (1981) employed the strains C. purpurea IBP 179 and MUT 168, which
produced ergosine. Addition of 3–6 g L–1 of the proline analogue—the anticancer
substance 1, 3-thiazolidine-4-carboxylic acid-resulted in the synthesis of 1´ ß-
methyl-5’α-isobutyl-9´-thiaergopeptine (Thiaergosine). The biosynthesis of similar
compounds has been described in the patent of Kobel et al. (1982). Addition of
appropriate precursors to cultures of the strain C. purpurea NRRL 12043, which
produces ergotamine and ergotaminine, and to those of the strain NRRL 12044,
that produces ergocristine and ergocristinine, yielded a number of substances.
These derivatives of peptidic alkaloids exert a spectrum of physiological and
therapeutical effects (dopaminergic stimulation, prolactin inhibition,
vasoconstriction activity, etc.). 9´-Thia-ergocristine and 9´-thia-ergotamine can
be mentioned as representatives of such substances.

12.7. CONTROL AND MODELLING OF ERGOT ALKALOID
FERMENTATION

Processes in which final yields of products were influenced by precursor addition
or by limitation and dosing of individual nutrients were mentioned earlier.
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Tryptophan, the building unit of the ergoline nucleus (Floss, 1976), can also be
used to increase production of many alkaloids. Detailed research into the topic
was done by, e.g., Gaberc-Porekar et al. (1992b). A comparative study with a
number of strains producing different ergot alkaloids was performed by Erge et
al. (1984). More details are given in Chapter 7.

Bianchi et al. (1981) and Crespi-Perellino et al. (1994) carried out certain
generalization of results with controlled precursor addition promoting
ergopeptine production. An amino acid at position 3 of the ergopeptine molecule
is specific, amino acids at positions 1 and 2 can be changed. Amino acids with
a lipophilic side chain can be introduced into the ergopeptine molecule depending
on the number of C atoms in the side chain.

Some model procedures for a more complex control of fermentative
production of ergot alkaloids were elaborated based on, e.g. mathematical
models of clavine and ergopeptine alkaloid production in batch cultivation. A
model based on the concentration of extracellular and intraceliular phosphate
was published for clavine alkaloids (Votruba and Pazoutová, 1981). A
mathematical simulation of different technological alternatives of clavine
production was done on this basis (Pazoutová et al., 1981b). Apart from this
model, also a hypothesis was published on gene expression in Claviceps
biosynthetic pathways (Pazoutová and Sajdl, 1988). A regulation model of the
gene expression for alkaloid biosynthesis was proposed according to which the
tryptophan-induced synthesis is mediated by an activator binding tryptophan
and stimulating the transcription of pertinent genes. The kinetics of clavine
alkaloids production was also investigated (Flieger et al., 1988). Based on these
results, processes were developed in which elimination of feed-back inhibition
by fermentation products lead to a higher production of clavine alkaloids and
ergometrine (Flieger et al., 1987).

In the case of ergopeptine alkaloids, batch submerged cultivation was
modelled on the basis of the predicted concentrations of biomass, alkaloids
and sucrose. Good agreement was achieved between the calculated and found
values of the former two parameters (Grm et al., 1980). Using a previously
found correlation between growth and alkaloid biosynthesis on the one hand
(Milièiæ et al., 1987) and the effects of cultivation conditions on morphology
and alkaloid synthesis on the other (Milièiæ et al., 1989), Milièiæ et al. (1993)
elaborated a more general model. Models of microorganism “life span”,
“microbial growth” and “alkaloid synthesis” were elaborated on the basis of
the specific growth rates and morphological analysis of proliferation.

Preliminary studies, whose results could be used for model building were
performed with producers of simple derivatives of lysergic acid. Bumbová-
Linhartová et al. (1991) divided the production process of these derivatives into
three phases—production, post-production and degradation ones—and set up
their characteristics.

Other procedures leading to increased effectivity of the production processes
are also described in the patent literature. Rochelmayer (1965) stimulated
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alkaloid biosynthesis by adding parts of the Thallophyta, especially fungi and
bacteria, into the medium. A similar principle was adopted in the patent of
Fiedler et al. (1989) where elicitors were used to enhance the activity of
biosynthetic enzymes in microorganisms and higher plants. Another way
increasing of alkaloid biosynthesis by more than 100%, described by Rylko et
al. (1988a, b, c), made use of suitable inducers of cytochrome P-450. A positive
effect of substances modifying cell lipids of production strains has also been
demonstrated (Køen et al., 1988a,b). These substances increased alkaloid
production by almost 74%; the same effect has been shown with high-producing
strains (Sajdl et al., 1988a). The relationship between morphology of saprophytic
cells and production capability has not been explicitly elucidated yet (Esser and
Tudzynski, 1978; Didek-Brumec et al., 1991 a). The production of alkaloids is
supported by such cultivation conditions that cause mycelial differentiation to
sclerotium cells (Kybal, 1981; Wichmann and Voigt, 1962) and are connected
with specific manifestations of the primary metabolism (Kleinerová, 1975; Kybal
et al., 1978, 1981; Zalai and Jaksa, 1981). These findings have been
complemented by Lösecke et al. (1980, 1981, 1982) by the data on the
relationship between the ultrastructure of cells from submerged culture and
alkaloid production.

12.8. PRODUCTION OF INOCULATION MATERIAL FOR
PARASITIC ERGOT PRODUCTION

The infection material for inoculation has been mentioned by Németh in Chapter
11 “Parasitic production of ergot alkaloids”. Asexual sporesconidia—are
exclusively used as a source of the primary infection in the parasitic production
of ergot. When the infection inoculation material is to be prepared, the
saprophytic cultivation aims at obtaining the maximum amount of vital
infectious spores. Nutritional sources and the cultivation process itself are
adapted to support growth and differentiation of hyphae to obtain massive
conidiation.

Cultivation processes are generally identical with those for the production
of alkaloids. It is possible to employ cultivation on solid substrates as well as
stationary or submerged cultivation in liquid media. Grains, which were reported
as the solid-state medium of choice since the 1940s, has been mentioned by
Chapter 11 (see also Kybal, 1955; Sastry et al., 1970b). The grains supplemented
by nutrients (Kybal, 1963) was still used in the 1980s as an optimum substrate
for production of high-quality inoculation material and a reference standard
for comparison with other inoculation materials. This material, or conidia from
surface agar cultures, were used also in experimental parasitic cultivations
(Corbett et al., 1974; Kybal and Strnadová., 1968; Singh et al., 1992) while
inoculation material from submerged cultivations has been used less frequently
(Košir et al., 1981). Cultivations on the surface of liquid media are performed
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with the plastic bags (Harazim et al., 1984; Kybal and Vlèek, 1976; Strnadová
et al., 1986) or other suitable equipment (Kybal and Strnadová, 1982).
Submerged cultivations, depending on the properties of the parasitic production
strains, are multi-stage. The produced infection material can be conserved in a
sucrose solution (Kubec et al., 1974), mixed with an inert filler, granulated and
dried (Kiniczky et al., 1982; Kybal et al., 1990) or frozen in an osmotically
stabilized medium (Yásárhelyi et al., 1980a). In experiments done by Czech
authors, optimum results were achieved with an inoculation material dried
together with SiO2 (Valík and Malinka, 1992).

Quality evaluation of the inoculation material can be done by vital staining
of conidia, but methods based on germination ability (Švecová, 1985) and
determination of the unit infection dose appears more optimal. An optimal
number of conidia and a procedure of infection of a host spike should be
experimentally determined for each kind of inoculation material and a type of
host (Sastry et al., 1970a, c).

12.9. PRODUCTION OF OTHER SUBSTANCES BY CLAVICEPS

Fungi of the genus Claviceps have been shown to produce not only ergot alkaloids
but also other substances. Tryptophan is used as a starting material for biosynthesis
of ergot alkaloids. The use of the Claviceps fungi is mentioned in the patent of
Enatsu and Terui (1967) describing L-tryptophan production. In the process
reported by Dinelli et al. (1972), enzyme complexes isolated among others from
Claviceps are employed for the production of L-tryptophan from indole and
serine. The patent of Lapis et al. (1978) describes the manufacture of antitumor
basic proteins with molecular weight of 1, 8–3, 5 kDa from the mycelium of C.
purpurea and C. fusiformis.

The rice leaf binding component, produced in aerobic cultures of the strain
Claviceps purpurea ATCC 9605 or of a number of other microorganisms (Oishi
et al., 1984), can be used to increase the rice crop. The active component increases
the yield and shortens the production period. Also other metabolites of Claviceps
can find application in agriculture practice. Patent of Dowd et al. (1988) describes
the use of tremorgenic mycotoxins as insecticides against corn earworm and
fall armyworm. Gubaòski and Lowkis (1964) have demonstrated the inhibition
of the tobacco mosaic virus by a substance isolated from C. purpurea.

Detoxification of methyl-N-methylanthranilate to methyl-anthranilate using
a number of microorganisms, among others Claviceps spp., is described in the
patent of Page et al. (1989). The detoxification was carried out in a 4–8-day
fermentation process.

There are two patents describing production of lipids. The patent of Fukuda
(1986) referred to a method of isolation of lipids from lipid-producing algae
and fungi, including Claviceps. In the patent of Sarkisova et al. (1987) the
strain C. purpurea 312A produced lipids with composition similar to that of
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cotton-seed oil. After a 10-day cultivation in a liquid medium, the biomass
contained 27–46% of lipids.

Production of carbohydrates is also mentioned in two patents. Glucans,
undesirable in ergot alkaloid fermentation but applicable in a number of other
industrial branches including the pharmaceutical industry, are produced
according to the patent of Johal and Cash (1989) by different filamentous fungi,
including Claviceps. Glucans are remarkable for their pharmacological, especially
immunomodulatory, effects and their future therapeutical use can be envisaged.
The patent of Senda et al. (1989) describes the production of another type of
carbohydrates—oligoinulosaccharides—using ß-fructofuranosidase from
different microorganisms (also from Claviceps purpurea). These oligosaccharides
can be employed, e.g., in the food industry.

12.10. DOWN-STREAM PROCESSES

Procedures for the subsequent processing of fermentation products depend on
their properties; they are different for products of stationary cultivations and
of submerged ones, and also for water soluble (clavines, lysergic acid and its
derivatives, ergometrine) or insoluble (ergopeptines) substances.

The concentration of ergopeptines in a medium during their surface
production is negligible; the mycelium is processed in this case. Isolation
procedures are very similar to those used for the isolation of alkaloids from
ergot sclerotia grown during field parasitic cultivation. When clavines, lysergic
acid or its derivatives are produced by surface fermentation it is advantageous
to process both the mycelia and the medium.

In the case of submerged cultivation the whole volume of a medium with the
mycelium is processed. Due to the mechanical stress and the resulting injury to
the hyphae a non-negligible amount of hydrophobic alkaloids can be contained
in the medium.

To decide what isolation process should be used it is necessary to take into
account also other substances produced by the fungi. Besides the already
mentioned glucans, which complicate manipulation with the end product of
fermentation and make the isolation more expensive, these effects can be exerted
also by lipids and pigments.

Isolation processes used in industry are detailed in Chapter 13.
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