ERGOT
Medicinal and Aromatic Plants—Industrial Profiles
Individual volumes in this series provide both industry and academia with in-depth coverage of one major medicinal or aromatic plant of industrial importance.

Edited by Dr Roland Hardman

Volume 1
Valerian
edited by Peter J.Houghton

Volume 2
Perilla
edited by He-Ci Yu, Kenichi Kosuna and Megumi Haga

Volume 3
Poppy
edited by Jenő Bernáth

Volume 4
Cannabis
edited by David T.Brown

Volume 5
Neem
by H.S.Puri

Volume 6
Ergot
edited by Vladimír Křen and Ladislav Cvak

Other volumes in preparation
Allium, edited by K.Chan
Artemisia, edited by C.Wright
Basil, edited by R.Hiltunen and Y.Holm
Caraway, edited by É.Németh
Cardamom, edited by P.N.Ravindran and K.J.Madusoodanan
Chamomile, edited by R.Franke and H.Schilcher
Cinnamon and Cassia, edited by P.N.Ravindran and S.Ravindran
Colchicum, edited by V.Šimánek
Curcuma, edited by B.A.Nagasampagi and A.P.Purohit
Eucalyptus, edited by J.Coppen
Ginkgo, edited by T.van Beek
Ginseng, by W.Court
Hypericum, edited by K.Berger Büter and B.Büter
Illicium and Pimpinella, edited by M.Miró Jodral
Kava, edited by Y.N.Singh
Licorice, by L.E.Craker, L.Kapoor and N.Mamedov
Piper Nigrum, edited by P.N.Ravindran
Plantago, edited by C.Andary and S.Nishibe
Saffron, edited by M.Negbi
Salvia, edited by S.E.Kintzios

Copyright © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Harwood Academic Publishers imprint, part of The Gordon and Breach Publishing Group.
ERGOT
The Genus *Claviceps*

Edited by

Vladimír Křen
Institute of Microbiology
Academy of Sciences of the Czech Republic
Prague, Czech Republic

and

Ladislav Cvak
Galena Pharmaceutical Company
Opava, Czech Republic

harwood academic publishers
Australia • Canada • China • France • Germany • India • Japan
Luxembourg • Malaysia • The Netherlands • Russia • Singapore
Switzerland
CONTENTS

Preface to the Series vii
Preface ix
Names of Ergot in Various Countries of the World xi
Contributors xiii

1 The History of Ergot 1
Anacleto Minghetti and Nicoletta Crespi-Perellino

2 Biology and Life Strategy of the Ergot Fungi 25
Klaus B.Tenberge

3 The Taxonomy and Phylogeny of Claviceps 57
Sylvie Pazoutová and Douglas P.Parbery

4 Genetics of Claviceps purpurea 79
Paul Tudzynski

5 Biosynthesis of Ergot Alkaloids 95
Ullrich Keller

6 Physiological Regulation of Ergot Alkaloid Production and Special Cultivation Techniques 165
Vladimír Křen

7 Ergot Alkaloids and Other Metabolites of the Genus Claviceps 173
Martin Buchta and Ladislav Cvak

8 Chemical Modifications of Ergot Alkaloids 201
Petr Bulej and Ladislav Cvak

9 Biotransformations of Ergot Alkaloids 229
Vladimír Křen

10 Analytical Chemistry of Ergot Alkaloids 267
Alexandr Jegorov
11 Parasitic Production of Ergot Alkaloids
 Éva Németh
 303

12 Saprophytic Cultivation of Claviceps
 Zdeněk Malinka
 321

13 Industrial Production of Ergot Alkaloids
 Ladislav Cvak
 373

14 Ergot Alkaloids and their Derivatives as Ligands for
 Serotoninergic, Dopaminergic, and Adrenergic Receptors
 Heinz Pertz and Eckart Eich
 411

15 Antimicrobial and Antitumor Effects of Ergot Alkaloids
 and their Derivatives
 Eckart Eich and Heinz Pertz
 441

16 Role of Ergot Alkaloids in the Immune System
 Auna Fišerová and Miloslav Pospíšil
 451

17 Toxicology of Ergot Alkaloids in Agriculture
 Richard A. Shelby
 469

18 Producers of Ergot Alkaloids out of Claviceps Genus
 Anatoly G. Kozlovsky
 479
PREFACE TO THE SERIES

There is increasing interest in industry, academia and the health sciences in medicinal and aromatic plants. In passing from plant production to the eventual product used by the public, many sciences are involved. This series brings together information which is currently scattered through an ever increasing number of journals. Each volume gives an in-depth look at one plant genus, about which an area specialist has assembled information ranging from the production of the plant to market trends and quality control.

Many industries are involved such as forestry, agriculture, chemical, food, flavour, beverage, pharmaceutical, cosmetic and fragrance. The plant raw materials are roots, rhizomes, bulbs, leaves, stems, barks, wood, flowers, fruits and seeds. These yield gums, resins, essential (volatile) oils, fixed oils, waxes, juices, extracts and spices for medicinal and aromatic purposes. All these commodities are traded world-wide. A dealer’s market report for an item may say “Drought in the country of origin has forced up prices”.

Natural products do not mean safe products and account of this has to be taken by the above industries, which are subject to regulation. For example, a number of plants which are approved for use in medicine must not be used in cosmetic products.

The assessment of safe to use starts with the harvested plant material which has to comply with an official monograph. This may require absence of, or prescribed limits of, radioactive material, heavy metals, aflatoxin, pesticide residue, as well as the required level of active principle. This analytical control is costly and tends to exclude small batches of plant material. Large scale contracted mechanised cultivation with designated seed or plantlets is now preferable.

Today, plant selection is not only for the yield of active principle, but for the plant’s ability to overcome disease, climatic stress and the hazards caused by mankind. Such methods as in vitro fertilisation, meristem cultures and somatic embryogenesis are used. The transfer of sections of DNA is giving rise to controversy in the case of some end-uses of the plant material.

Some suppliers of plant raw material are now able to certify that they are supplying organically-farmed medicinal plants, herbs and spices. The Economic Union directive (CVO/EU No. 2092/91) details the specifications for the obligatory quality controls to be carried out at all stages of production and processing of organic products.

Fascinating plant folklore and ethnopharmacology leads to medicinal potential. Examples are the muscle relaxants based on the arrow poison, curare, from species of Chondrodendron, and the antimalarials derived from species of Cinchona and Artemisia. The methods of detection of pharmacological activity have become increasingly reliable and specific, frequently involving enzymes in bioassays and avoiding the use of laboratory animals. By using bioassay linked fractionation of crude plant juices or extracts, compounds can be specifically
targeted which, for example, inhibit blood platelet aggregation, or have antitumour, or antiviral, or any other required activity. With the assistance of robotic devices, all the members of a genus may be readily screened. However, the plant material must be fully authenticated by a specialist.

The medicinal traditions of ancient civilisations such as those of China and India have a large armamentaria of plants in their pharmacopoeias which are used throughout South East Asia. A similar situation exists in Africa and South America. Thus, a very high percentage of the World's population relies on medicinal and aromatic plants for their medicine. Western medicine is also responding. Already in Germany all medical practitioners have to pass an examination in phytotherapy before being allowed to practise. It is noticeable that throughout Europe and the USA, medical, pharmacy and health related schools are increasingly offering training in phytotherapy.

Multinational pharmaceutical companies have become less enamoured of the single compound magic bullet cure. The high costs of such ventures and the endless competition from me too compounds from rival companies often discourage the attempt. Independent phytomedicine companies have been very strong in Germany. However, by the end of 1995, eleven (almost all) had been acquired by the multina-tional pharmaceutical firms, acknowledging the lay public’s growing demand for phytomedicines in the Western World.

The business of dietary supplements in the Western World has expanded from the Health Store to the pharmacy. Alternative medicine includes plant based products. Appropriate measures to ensure the quality, safety and efficacy of these either already exist or are being answered by greater legislative control by such bodies as the Food and Drug Administration of the USA and the recently created European Agency for the Evaluation of Medicinal Products, based in London.

In the USA, the Dietary Supplement and Health Education Act of 1994 recognised the class of phytotherapeutic agents derived from medicinal and aromatic plants. Furthermore, under public pressure, the US Congress set up an Office of Alternative Medicine and this office in 1994 assisted the filing of several Investigational New Drug (IND) applications, required for clinical trials of some Chinese herbal preparations. The significance of these applications was that each Chinese preparation involved several plants and yet was handled as a single IND. A demonstration of the contribution to efficacy, of each ingredient of each plant, was not required. This was a major step forward towards more sensible regulations in regard to phytomedicines.

My thanks are due to the staff of Harwood Academic Publishers who have made this series possible and especially to the volume editors and their chapter contributors for the authoritative information.

Roland Hardman
Ergot (*Claviceps purpurea*) is best known as a disease of rye and some other grasses. However, it is probably the most widely cultivated fungus and it has become an important field crop.

The main reason for its importance is ergot alkaloids, which are extensively used in medicine. No other class of compounds exhibits such a wide spectrum of structural diversity, biological activity and therapeutic uses as ergot derivatives. Currently, ergot alkaloids cover a wide spectrum of therapeutic uses as the drugs of high potency in the treatment of uterine atonia, postpartum bleeding, migraine, orthostatic circulatory disturbances, senile cerebral insufficiency, hypertension, hyperprolactinemia, acromegaly and parkinsonism.

Ergot—once dreaded pest and cause of epidemic intoxications has now become a profitable crop for farmers. However, the danger of intoxication and crop damage still persists. The fungus was already well known in the middle ages, causing outbreaks of ergotism or “epidemic gangrene” called for example, St Anthony’s fire.

Ergot alkaloids are traditionally obtained by extraction of ergot sclerotia artificially cultivated on cereals. The parasitic cultures are not able to produce some, e.g., clavine alkaloids necessary for most semisynthetic drugs. Crop fluctuations and market demands lead to the development of submerged cultivation in production plants. Present trends in ergot cultivation are the development of saprophytic cultivation processes and improvement of field production by, for example, introduction of new hosts and ergot strains. Even though there is a constant effort to prepare ergot alkaloids synthetically their bioproduction is still much more competitive. In the contemporary economical crisis of agriculture, especially in Europe, the ergot is a good and profitable alternative crop for farmers. Thanks to the new advanced technologies it experiences a real renaissance.

Various strains of *Claviceps* served as models for study of the fungal metabolism, biogenesis, physiological and genetic aspects of ergot alkaloids production. This interest continues because of good perspectives of submerged and field production of ergot alkaloids.

The volume on the *Claviceps* genus should provide readers with both biotechnological aspects of ergot alkaloid production, genetic and physiological data but also with newly emerging dangers of toxicology and environmental risks of ergot infection and contamination of food and forage. Chemistry and pharmacology of ergot alkaloids will demonstrate both their use as classical drugs and their newly discovered pharmacological applications.

Vladimír Křen
<table>
<thead>
<tr>
<th>NAME</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anyarozs</td>
<td>Hungary</td>
</tr>
<tr>
<td>Bakkaku, Ergot</td>
<td>Japan</td>
</tr>
<tr>
<td>Çacdar Mahmuzu</td>
<td>Turkey</td>
</tr>
<tr>
<td>Centeio erspigado</td>
<td>Brazil</td>
</tr>
<tr>
<td>Cornezuelo de centeno</td>
<td>Argentina</td>
</tr>
<tr>
<td>Cornezuelo de centeno</td>
<td>Chile</td>
</tr>
<tr>
<td>Cornezuelo de centeno</td>
<td>Paraguay</td>
</tr>
<tr>
<td>Cornezuelo de centeno</td>
<td>Spain</td>
</tr>
<tr>
<td>Cravagem de anteio</td>
<td>Brazil</td>
</tr>
<tr>
<td>Cravagem de anteio</td>
<td>Portugal</td>
</tr>
<tr>
<td>Cuernicillo de centeno</td>
<td>Mexico</td>
</tr>
<tr>
<td>Ergot</td>
<td>United States</td>
</tr>
<tr>
<td>Ergot de seigle</td>
<td>Belgium</td>
</tr>
<tr>
<td>Ergot de seigle</td>
<td>France</td>
</tr>
<tr>
<td>Erperao de anteio</td>
<td>Brazil</td>
</tr>
<tr>
<td>Erüsi bôdês briza</td>
<td>Greece</td>
</tr>
<tr>
<td>Grano speronato</td>
<td>Italy</td>
</tr>
<tr>
<td>Meldröje</td>
<td>Denmark</td>
</tr>
<tr>
<td>Meldröye</td>
<td>Norway</td>
</tr>
<tr>
<td>Mjöldryga</td>
<td>Finland</td>
</tr>
<tr>
<td>Moederkoorn</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Mutterkorn</td>
<td>Austria</td>
</tr>
<tr>
<td>Mutterkorn</td>
<td>Germany</td>
</tr>
<tr>
<td>Námel</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Razema glavnica</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>Secara cornuta</td>
<td>Romania</td>
</tr>
<tr>
<td>Segale cornuto</td>
<td>Italy</td>
</tr>
<tr>
<td>Sporyn’ja</td>
<td>Russia</td>
</tr>
<tr>
<td>Sporyzs</td>
<td>Poland</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Martin Buchta
Galena Pharmaceutical Company
74770 Opava 9
Czech Republic
e-mail: MARTIN_BUCHTA@IVAX.COM

Petr Bulej
Galena Pharmaceutical Company
74770 Opava 9
Czech Republic
e-mail: PETR_BULEJ@IVAX.COM

Nicoletta Crespi-Perellino
Department of Pharmaceutical Sciences
University of Bologna
Via Belmeloro 6
40126 Bologna
Italy

Ladislav Cvak
Head of R&D
Galena Pharmaceutical Company
74770 Opava 9
Czech Republic
e-mail: LADISLAV_CVAK@IVAX.COM

Eckart Eich
Institut für Pharmazie II
Fern Universität Berlin
Koenigin-Luise-Strasse 2
14195 Berlin (Dahlem)
Germany

Anna Fišerová
Department of Immunology and Gnotobiology
Institute of Microbiology
Academy of Sciences of the Czech Republic
Vídeňská 1083
142 20 Prague 4
Czech Republic
e-mail: fiserova@biomed.cas.cz

Alexandr Jegorov
Galena Pharmaceutical Company
Research Unit
Branišovská 31
37005 České Budějovice
Czech Republic
e-mail: husakm@marvin.jcu.cz

Ullrich Keller
Max-Volmer-Institut für Biophysikalische Chemie und Biochemie
Fachgebiet Biochemie und Molekulare Biologie
Technische Universität Berlin
Franklinstrasse 29
10587 Berlin-Charlottenburg
Germany
e-mail: kellghbe@mailszrz.zrz.TU-Berlin.de

Anatoly G.Kozlovsky
Laboratory of Biosynthesis of Biologically Active Compounds
Institute of Biochemistry and Physiology of Microorganisms
Russian Academy of Sciences
142292 Pushchino
Moscow Region
Russia
e-mail: kozlovski@ibpm.serpukhov.su

Vladimír Křen
Laboratory of Biotransformation
Institute of Microbiology
Academy of Sciences of the Czech Republic
Vídeňská 1083
142 20 Prague 4
Czech Republic
e-mail: kren@biomed.cas.cz
Zděnek Malinka
Galena Pharmaceutical Company
74770 Opava 9
Czech Republic
e-mail: ZDENEK_MALINKA@IVAX.COM

Anacleto Minghetti
Department of Pharmaceutical Sciences
University of Bologna
Via Belmeloro 6
40126 Bologna
Italy
e-mail: ming@kaiser.alma.unibo.it

Éva Németh
University of Horticulture and Food Industry
Villányi str. 29–43
1114 Budapest
Hungary
e-mail: h11531ber@ella.hu

Douglas P. Parbery
Faculty of Agriculture, Forestry and Horticulture
University of Melbourne
Parkville 3052
Australia

Sylvie Pazoutová
Institute of Microbiology
Academy of Sciences of the Czech Republic
Vídeňská 1083
14220 Prague 4
Czech Republic
e-mail: pazouto@biomed.cas.cz

Heinz Pertz
Institut für Pharmazie II
Freie Universität Berlin
Koenigin-Luise-Strasse 2
14195 Berlin (Dahlem)
Germany

Miloslav Pospíšil
Department of Immunology and Gnotobiology
Institute of Microbiology
Academy of Sciences of the Czech Republic
Vídeňská 1083
142 20 Prague 4
Czech Republic
e-mail: pospisil@biomed.cas.cz

Richard A. Shelby
Department of Plant Pathology
209 Life Sciences
Auburn University
AL 36849
USA
e-mail: rshelby@earthlink.net

Klaus B. Tenberge
Institut für Botanik
Westfälische Wilhelms-Universität
Schlossgarten 3
48149 Münster
Germany
e-mail: tenberg@uni-muenster

Paul Tudzynski
Institut für Botanik
Westfälische Wilhelms-Universität
Schlossgarten 3
48149 Münster
Germany
e-mail: tudzyns@uni-muenster.de