An efficient regioselective method for oxidation of phenols to \(\alpha \)-quinones is reported. When this procedure is combined with a subsequent reduction, it proves to be useful for the construction of a variety of catechols.

\(\alpha \)-Quinones undergo a variety of reactions. For example, these species can be reduced to the corresponding catechol.\(^{1,2}\) In addition, as a highly reactive 8\(\pi \)-electron system, \(\alpha \)-quinones display two 4\(\pi \) components as potential sites for Diels–Alder reactions.\(^{3}\) The selectivity between sites results from the polarizability of the complementary 2\(\pi \) component. For example, polarized alkenes such as enamines add to the external dione to restore aromaticity and yield a dioxin,\(^{4}\) while less polarized alkenes such as styrene add to the cyclohexadiene portion to yield a [2.2.2]bicyclooctane.\(^{5}\) Because \(\alpha \)-quinones display four 2\(\pi \) components, there are varieties of [3 + 2] cycloaddition formats as well. The dipolar addition can be controlled so that either a carbonyl or an olefin moiety undergoes reaction.\(^{6}\) In addition, there are many other reactions where the functional groups of \(\alpha \)-quinones can be distinguished. For example, cesium fluorosulfate converts the most electrophilic carbonyl group of an \(\alpha \)-quinone to 2,2-difluorocyclohexadienone,\(^{7}\) while addition of a Wittig reagent can generate a benzopyran-2-one.\(^{8}\) The ring olefins can be distinguished in nonsymmetric \(\alpha \)-quinones: the most nucleophilic olefin is either oxidized or cleaved with peroxyacid\(^{9}\) and Pb\(^{10}\) reagents, respectively.

Such versatility clearly suggests that unsymmetric \(\alpha \)-quinones should be of considerable synthetic use. However, a convenient means to access a range of differently substituted \(\alpha \)-quinones has been lacking due in part to the difficulty in accessing the appropriately substituted catechol. A thorough survey of the literature reveals a few methods that allow for the regioselective conversion of a phenol to an \(\alpha \)-catechol.\(^{11}\) To the best of our knowledge, there are no previous examples of a regioselective procedure for the direct conversion of a phenol into an \(\alpha \)-quinone. Oxidants such as Fremy’s radical,\(^{12}\) \(\text{MeReO}_3 \cdot \text{H}_2\text{O}_2 \),\(^{13}\) dimethyldioxirane,\(^{14}\) and benzeneselenenic anhydride\(^{15}\) are indiscriminate or favor oxidation of the para position unless blocked with a substituent.
While investigating oxidative dearomatizations of 4-alkylated resorcinol derivatives with hypervalent iodine reagents, we discovered another useful oxidative property of o-iodoxybenzoic acid, a reagent otherwise known as IBX (1). Instead of the cyclohexa-2,5-dienone observed with I$_{III}$ reagents, the o-quinone smoothly emerged from phenol 2 in 69% yield (Figure 1).

Because of this unexpected yet pleasing transformation, we paused to investigate the potential of this novel transformation.

Table 1 illuminates the scope of this procedure. The oxidation of an array of phenols (0.1 M in a respective solvent) with a suspension of IBX (1 equiv) at room temperature was investigated. A double oxidation was found to ensue that produced a range of o-quinones. The reaction times varied from 6 to 53 h and depended primarily upon the polarity of the solvent and the functional groups distributed within the starting phenol. The transformation proved to be surprisingly general and regioselective, with the limitation that the starting phenol material must contain at least one electron-donating group. Phenols without electron-donating substituents and those containing electron-withdrawing groups such as –C(O)R, –CHO, and –NO$_2$ failed to undergo oxidation.

Because most of the o-quinone products proved to be volatile and highly reactive, the overall yield for this process was estimated by 1H NMR. This was accomplished by conducting the reactions in a deuterated solvent that was doped upon completion with 1 equiv of a 1H NMR active standard such as EtOAc or DMF. The percent conversion was then estimated by comparing the integration of a proton of the product with a proton of the standard. DMF proved to be the superior solvent. For example, oxidation of 7 → 8 in CDCl$_3$ required 14 h and proceeded in 85% yield. Application of d$_7$-DMF speeded the conversion of 7 → 8 to 1.5 h in essentially quantitative yield. Similar improvements were observed in the conversion of 9 → 8 by exchanging d$_7$-DMF for CDCl$_3$. However, CDCl$_3$ worked well as a solvent in some instances. Oxidation of 5 → 6 in CDCl$_3$ required 19 h and afforded 6 in 92% yield, while oxidations of 10 → 11, 12 → 13, and 16 → 17 proceeded in 96, 84, and 99% yields, respectively. The low-yielding oxidation of 18 → 19 in both d$_7$-DMF and CDCl$_3$ is further evidence of the requirement that the starting substrate contain an electron-donating substituent, while the poor conversion of 14 → 15 is believed to reflect a solubility problem of 14.

Reduction of the o-quinone product occurs upon hydrogenation or exposure to Na$_2$S$_2$O$_4$ (Figure 2). After an oxidation conducted in DMF was complete, K$_2$CO$_3$ (2.5 equiv), Ac$_2$O (2.1 equiv), and Pd/C (5 mol %) were added to the crude product mixture and the resulting suspension was stirred under a hydrogen atmosphere for 24 h. The bisacetylated catechol that emerged facilitated isolation. The protected hydroquinone proved to be much more stable and less volatile than the corresponding o-quinone and catechol precursors. Since oxidation, reduction, and acylation occur successively in the same pot, this procedure embodies a high-yielding 1-pot conversion of an electron-rich phenol into a catechol. The isolated yields of the bis-acetylated products 20 and 21, 87 and 76%, respectively, substantiated the validity of our 1H NMR method for estimating the yields of the o-quinones.

This highly regioselective oxidation of phenols to o-quinones with IBX (1) is remarkable because it represents a double oxidation; a hydroxy residue is regioselectively installed, and the resulting catechol intermediate is oxidized. The process most likely follows the pathway shown in Figure 3. The starting material combines with IBX to extrude H$_2$O producing the IV intermediate A, which serves to intramolecularly deliver the oxygen to the most nucleophilic and least congested ortho site on the starting phenol. During this delivery process, the IV atom is concurrently reduced to the III species B, which in turn undergoes tautomerization to intermediate C. The oxidation of catechols to o-quinones by III reagents is well documented.
These types of reactions are believed to proceed by exchange of an I$_{III}$ ligand for the phenol to produce a structure similar to C that oxidatively collapses with concurrent reduction of the iodine atom to produce an α-quinone and an I$_{I}$ reagent.

To test the validity of this mechanism, the phenol 22 was exposed to IBX (1) (Figure 4). Because phenol 22 has no α-hydrogens, the cyclohexa-2,4-dienone cannot tautomerize and further oxidize. Instead, structure 23, which results from a Diels–Alder dimerization of the corresponding methylated intermediate B, emerges as the sole diastereomeric product. This I$_{III}$ dimer could be isolated but proved to be unstable toward chromatography. Reduction of 23 with sodium dithionite (Na$_2$S$_2$O$_4$) furnished diol 24 in 51% (isolated yield), and this structure was fully characterized. A 1H NOE study of compound 24 established the relative stereochemical configuration to be that which emerges from dimerization of the cyclohexa-2,4-dienone intermediate on the face of the alkoxy residue.

In conclusion, the regioselective oxidation of electron-rich phenols with IBX (1) proves to be useful as an efficient method for the construction of a variety of catechols and o-quinones using mild, nontoxic conditions. Furthermore, such a procedure might find application in syntheses of dimeric structures such as bisorbidicillinol and trichodimerol.

Acknowledgements

Research support from the University of California Cancer Research Coordinating Committee in the form of two awards (19990641 and SB010064) is greatly appreciated along with additional financial support from NSF (CHE-9971211), PRF (PRF34986-G1), NIH (GM64831), the UC-AIDS Initiative (K00-SB-039), NSF Career (0135031), and Research Corporation. D.M. recognizes the financial assistance of the UCSB Graduate Division Mentor Fellowship. A.A.R. is indebted for summer support to the California Alliance for Minority Participation in science (CAMP), which is a statewide initiative funded by the National Science Foundation (HRD-9624189). R.W.V. appreciates the financial support of a 2001–2002 ACS Organic Division Graduate Fellowship sponsored by Organic Synthesis, Inc. We are also thankful for the support of our MS facility, funded in part by DAAD19-00-1-0026.

References

19. Phenol itself failed to undergo oxidation with IBX.

20. No correction was made for differences between the relaxation times of the examined proton in the product and standard. However, protons with similar characteristics and in similar chemical environments were compared if possible. The crude spectra that are available for 6, 8, 11, 13, 15, 17, and 19 contain the 2-iodobenzoic acid byproduct of IBX.

Figure 1.
An undesired but useful result.
Figure 2.
One-pot procedure converting phenols to catechols.
Figure 3.
Plausible mechanism.
Figure 4.
Evidence for the proposed mechanism.
Table 1

Oxidations of Phenols with IBX at 25 °C

<table>
<thead>
<tr>
<th>entry</th>
<th>phenol</th>
<th>solvent</th>
<th>time(h)</th>
<th>o-quinone</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>CDCl₃</td>
<td>19</td>
<td></td>
<td>92%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>CDCl₃</td>
<td>14</td>
<td></td>
<td>85%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>d₇-DMF</td>
<td>1.5</td>
<td></td>
<td>99%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>CDCl₃</td>
<td>48</td>
<td></td>
<td>16%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>d₇-DMF</td>
<td>8</td>
<td></td>
<td>99%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>CDCl₃</td>
<td>21</td>
<td></td>
<td>96%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>CDCl₃</td>
<td>10</td>
<td></td>
<td>84%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>d₇-DMF</td>
<td>24</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>CDCl₃</td>
<td>53</td>
<td></td>
<td>99%</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>CDCl₃</td>
<td>20</td>
<td></td>
<td>33%</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>d₇-DMF</td>
<td>6</td>
<td></td>
<td>41%</td>
</tr>
</tbody>
</table>