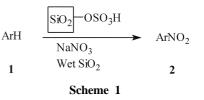
Nitration of Aromatic Compounds on Silica Sulfuric Acid

Mohammad Ali Zolfigol,^{†,*} BiBi Fatemeh Mirjalili,[‡] Abdolhamid Bamoniri, Mohammad Ali Karimi Zarchi, Amin Zarei, Leila Khazdooz, and Jalil Noei

[†]Chemistry Department, College of Science, Bu-Ali Sina University, Hamadan 65174, P. O. Box 4135, Iran [‡]Department of Chemistry, College of Science, Yazd University, Yazd, P. O. Box 89195-741, Iran Department of Chemistry, College of Science, Kashan University, Kashan 51167, Iran Received November 12, 2003

Key Words : Silica sulfuric acid, Sodium nitrate, Nitration, Solvent free conditions

Nitration of organic compounds has long been a very active and rewarding area of research and is the subject of a large body of literature.¹ Also nitro-aromatics compounds are extensively utilised and act as chemical feedstocks for a wide range of useful materials such as dyes, pharmaceuticals, perfumes, and plastics.² Therefore, the nitration of aromatic rings has received considerable attention of late, due to unsolved problems pertaining to regioselectivity, overnitration and competitive oxidation of substrates.³ Nitration of phenol taken as a special case has been studied by various nitrating agents under different conditions.⁴ The nitration of benzene and toluene is one of the most important routs to substituted aromatics in the production of chemical intermediates.⁵ The industrial nitration of toluene is performed by means of mixed acid, a mixture of nitric acid, sulfuric acid, and water^{5a} which leading to excessive acid waste streams and added expense.^{5b} Also, the separation of the products from the acid is often a difficult and energy consuming process that habitually implies a basic aqueous work-up. Moreover, sulfuric acid is corrosive and is dangerous to transport and handle.⁶ The above mentioned disadvantages of the commercial manufacturing process currently used has led to a substantial effort to develop viable alternatives, inter idea using solid acid catalyst,^{1,2,5-8} other sources of NO_2^+ , ^{3,9,10} organic nitrating agents, ^{11,12} metal nitrates,^{13,14} other acids replacing sulfuric acid such as inorganic acidic salts (NaHSO4·H2O, Mg(HSO4), Oxone®, \dots)¹⁵ and silica sulfuric acid,^{6,16} etc.


Our goal, in undertaking this line of work, was three-fold: a) to overcome the limitations and drawbacks of the reported methods such as tedious work-up,^{17,18} strongly acidic media,¹³ oxidation ability of the reagents and safety problems (storage, handling, using and also presence of toxic transition metal cations such as Cr^{+3} , Hg^{+2} , Cu^{+2} ,... within molecular structure of the reagents),^{13,14} (b) to perform solvent-free organic synthesis which seems to be a highly useful technique, especially for industry possessing many advantages like: reduced pollution, low costs, as well as simplicity in process and handling (these factors are especially important in industry),¹⁹ (c) moreover, to develop an high-yielding onepot synthesis of nitro-aromatics using a novel combination of reagents.

In addition, any reduction in the amount of liquid acids needed and/or any simplification in handling procedures would be highly convenient in terms of risk control, economic advantage and environment protection.¹⁹ Recently, we have reported the preparation of silica sulfuric acid **I** as a stable acidic reagent (solid acid) and showed its catalytic activity in synthetic methodology.^{16,20} In continuation of our studies in this regard, we have found that aromatic rings can be nitrated by using a combination of silica sulfuric acid **I**, NaNO₃ and wet SiO₂ under solvent free conditions. Therefore, we wish to report here a one-pot solid phase procedure for the nitration of different kind of aromatic compounds.

A good range of aromatic compounds **1** were also subjected to nitration in the presence of silica sulfuric acid **I**, NaNO₃, and wet SiO₂ (60% w/w) under solvent free conditions (Scheme 1). The nitration reactions were performed under mild conditions with moderate to good yields (Scheme 1 and Table) by simply placing the nitrating agents and substrates **1** in a reaction vessel and efficiently shaking the resulting mixture. Highly pure nitro compounds can be obtained by simple extraction and subsequent evaporation of the solvent. For this new system the in-situ generation of nitronium ion mechanism may be proposed (See Schemes 2 and 3).

Experimental Section

General. Chemicals were purchased from Fluka, Merck and Aldrich chemical companies. Yields refer to isolated

^{*}Corresponding Author. e-mail: Zolfi@basu.ac.ir, Fax: +98-811-8272404

Bull. Korean Chem. Soc. 2004, Vol. 25, No. 9 1415

$$3 \underbrace{\text{SiO}_2}_{\text{OSO}_3\text{H} + \text{NaNO}_3} \xrightarrow{\text{Wet SiO}_2} 3 \underbrace{\text{SiO}_2}_{\text{OSO}_3\text{Na} + \text{H}_3\text{O}^+} + \text{NO}_2^+}_{\text{ArH} + \text{NO}_2^+} \xrightarrow{\text{Ar}_{\text{NO}_2^+}} \underbrace{-\text{H}^+}_{\text{ArNO}_2} \text{ArNO}_2$$

$$\underbrace{\text{Scheme 2}}_{\text{Scheme 2}} 3 \underbrace{\text{SiO}_2}_{\text{OSO}_3\text{Na} + \text{H}_3\text{O}^+} + \text{NO}_2^+}_{\text{I} \text{RSH} + \text{NO}_2^+} \xrightarrow{\text{RS}-\text{NO}_2} + \text{H}^+}_{\text{RS}-\text{NO}_2} \xrightarrow{\text{RS}^+ + \text{NO}_2}_{\text{2} \text{RS}^+} \xrightarrow{\text{RS}-\text{SR}}_{\text{Scheme 3}} 3$$

Table 1. Nitration of aromatic rings with silica sulfuric acid (I), sodium nitrate, and wet SiO₂ (60% w/w) under solvent free condition

Entry	Substrate	T (°C)	Time (min)	Yield (%)	Product –	Mp (Bp) °C	
						Found	Reported ²¹
1	Benzene	25	2-3	80	Nitrobenzene	(208-210)	(210)
2	Toluene	25	2-3	85	4-Nitrotoluene	53-55	54
3	<i>p</i> -Xylene	25	2-3	90	2-Nitro-p-xylene	(232-233)	(234)
4	o-Xylene	25	2-3	85	4-Nitro-o-xylene	30-31	30
5	Thiophenol	25	6-7	90	Diphenyl disulfide	62-64	62
6	Phenol	25	12	85	4-Nitrophenol	113-114	114
7	Bromobenzene	25	3-4	85	4-Nitrobromobenzene	125-126	127
8	Chlorobenzene	25	3-4	80	4-Nitrochlorobenzene	82-83	83
9	Anisol	25	2-3	85	4-Nitroanisol	52-53	54
10	Biphenyl	60^{a}	30-35	75	4-nitrobiphenyl	112-113	114
11	3-Chlorophenol	25	10-12	81	2-Nitro-5-chlorophenol	40-43	42
12	N,N-Dimethyl aniline	25	1-2	94	4-Nitro-N,N-dimethylaniline	160-163	163
13	4-Methoxy benzaldehyde	25	6-7	74	3-Nitro-4-methoxybenzaldehyde	83-85	86
14	Naphthalene	50	15	91	1-Nitronaphthalene	70-71	71

^awas pulverized in a mortar in 25 °C for 1 min and then heated until 60 °C for 30-35 min.

pure products. The nitration products were characterized by comparison of their spectral (IR, ¹H-NMR), TLC and physical data with authentic samples.

General Procedure. A mixture of silica sulfuric acid **I** (0.6 g), sodium nitrate (1 mmol, 0.085 g), wet SiO_2 (0.5 g, 60% w/w) and aromatic compound **1** (1 mmol) was pulverized in a mortar for 2-35 min (the progress of the reaction was monitored by TLC), followed by CH₂Cl₂ (10 mL) addition and filtration of the resulting mixture. Dichloromethane was finally removed and the nitro compounds were obtained with moderate to good yields.

IR and ¹H-NMR of some of the nitrated products.

4-Nitro, N,N-Dimethyl aniline: IR (KBr) 800, 1300, 1350, 1500, 1525, 1600, 2900-3000 cm⁻¹; ¹H NMR (CDCl₃) δ_{ppm} 2.89 (s, 6H), 6.32 (d), 7.8 (d).

p-Nitrophenol: ¹H NMR (CDCl₃) δ_{ppm} 6.9 (d, 2H), 8.1 (d, 2H), 10 (s, 1H, O-H).

1-Nitronaphthalene: IR (KBr) 1330, 1520, 3050 cm⁻¹; ¹H NMR (CDCl₃) δ_{ppm} 8.43 (d, 1H), 7.17-8.1 (m, 6H).

1-Bromo-4-Nitrobenzene: ¹H NMR (CDCl₃) δ_{ppm} 7.8 (d,

2H), 8.3 (d, 2H).

2-Nitro-p-xylene: ¹H NMR (CDCl₃) δ_{ppm} 2.4 (s, 3H), 2.7 (s, 3H), 7.5 (s, 2H), 8.1 (s, 1H).

Diphenyl disulfide: ¹H NMR (CDCl₃) δ_{ppm} 7.3-7.8 (m, 10H) ppm.

3-Nitro-4-methoxy benzaldehyde: ¹H NMR (CDCl₃) δ_{ppm} 10 (s, 1H), 8.5 (sbr, 1H), 8.2 (dd, 1H), 7.3 (dbr, 1H), 4.1 (s, 3H).

5-Chloro-2-Nitro phenol: ¹H NMR (CDCl₃) δ_{ppm} 11 (s, 1H, OH), 8 (d, 1H), 7.6 (d, 1H), 7 (dd, 1H).

4-Nitrobiphenyl: ¹H NMR (CDCl₃) δ_{ppm} 8.5 (d, 2H), 7.8 (d, 2H), 7.3-7.7 (m, 5H).

Acknowledgement. The authors gratefully acknowledge partial support to this work by the Research Affair of Bu-Ali Sina University, Hamadan, I.R Iran.

References

1. Min, S.; Shi-Cong, C. J. Fluorine Chem. 2002, 113, 207.

Notes

- 1416 Bull. Korean Chem. Soc. 2004, Vol. 25, No. 9
- 2. Esakkidurai, T.; Pitchumani, K. J. Mol. Cat. A: Chemical 2002, 185, 305.
- Iranpoor, N.; Firouzabadi, H.; Heydari, R. Synth. Commun. 1999, 29, 3295.
- 4. Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. *Synlett* **2003**, 191 and references cited therein.
- (a) Kogelbauer, A.; Vassena, D.; Prins, R.; Armor, J. N. *Catalysis Today* **2000**, *55*, 151. (b) Dagade, S. P.; Waghmode, S. B.; Kadam, V. S.; Dongare, M. K. *Applied Catalysis A* **2002**, *226*, 49.
- Riego, J. M.; Sedin, Z.; Zaldivar, J. M.; Marziano, N. C.; Tortato, C. *Tetrahedron Lett.* **1996**, *37*, 513.
- 7. Peng, X.; Suzuki, H.; LU, C. Tetrahedron Lett. 2001, 42, 4357.
- Dagade, S. P.; Waghmode, S. B.; Kadam, V. S.; Dongare, M. K. *Applied Catalysis A* 2002, 226, 49.
- 9. Radoslaw, R. B.; Andrew, J. S. Tetrahedron Lett. 2001, 42, 6767.
- Iranpoor, N.; Firouzabadi, H.; Heydari, R. Phosphorus, Sulfur and Silicon 2003, 178, 1027.
- Rodrigues, J. A. R.; Oliveira Filho, A. P.; Moran, P. J. S.; Custodio, R. *Tetrahedron* **1999**, *55*, 6733.
- 12. Rodrigues, J. A. R.; Oliveira Filho, A. P.; Moran, P. J. S. Synth. Commun. **1999**, 29, 2169.
- (a) Delaude, L.; Laszlo, P.; Smith, K. Acc. Chem. Res. 1993, 26, 607. (b) Laszlo, P. Acc. Chem. Res. 1986, 19, 121. (c) Cornelis, A.; Laszlo, P.; Pennetreau, P. Bull. Soc. Chim. Belg. 1984, 93, 961.
- (a) Zolfigol, M. A.; Iranpoor, N.; Firouzabadi, H. Orient. J. Chem. 1998, 14, 369. (b) Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A. Iran. J. Chem. & Chem. Eng. 1997, 16, 48. (c) Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A. Synth. Commun. 1997, 27, 3301. (d) Iranpoor, N.; Firouzabadi, H.; Zolfigol, M. A. Synth. Commun.

1998, 28, 2773.

- (a) Zolfigol, M. A.; Bagherzadeh, M.; Madrakian, E.; Ghaemi, E.; Taqian-nasab, A. J. Chem. Res(S). 2001, 140. (b) Zolfigol, M. A.; Madrakian, E.; Ghaemi, E. Indian J. Chem. 2001, 40B, 1191.
- (a) Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. *Molecules* 2001, *6*, 614.
 (b) Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. *Molecules* 2002, *7*, 734.
- 17. Crivello, J. V. J. Org. Chem. 1981, 46, 3056.
- 18. Poirier, J. M.; Vottero, C. Tetrahedron 1989, 45, 1415.
- (a) Tanaka, K.; Toda, F. *Chem. Rev.* 2000, *100*, 1025. (b) Krchnak,
 V.; Holladay, M. W. *Chem. Rev.* 2002, *102*, 61. (c) Varma, R. S. *Green Chem.* 1999, *1*, 43.
- (a) Zolfigol, M. A. Tetrahedron 2001, 57, 9509. (b) Mirjalili, B. F.; Zolfigol, M. A.; Bamoniri, A. J. Korean Chem. Soc. 2001, 45, 546. (c) Zolfigol, M. A.; Bamoniri, A. Synlett 2002, 1621. (d) Mirjalili, B. F.; Zolfigol, M. A.; Bamoniri, A. Molecules 2002, 7, 751. (e) Zolfigol, M. A.; Shirini, F.; Ghorbani-Choghamarani, A.; Mohammadpoor-Baltork, I. Green Chem. 2002, 4, 562. (f) Salehi, P; Dabiri, M.; Zolfigol, M. A.; Bodaghi-fard, M. A. Tetrahedron Lett. 2003, 44, 2889. (g) Zolfigol, M. A.; Chehardoli, G. A.; Mallakpour, S. E. Synth. Commun. 2003, 33, 833. (h) Mirjalili, B. F.; Zolfigol, M. A.; Bamoniri, A.; Zarei, A. Bull. Korean Chem. Soc. 2003, 24, 400. (i) Zolfigol, M. A.; Ghorbani-Choghamarani, A. Phosphorus, Sulfur and Silicon 2003, 178, 1623. (j) Shirini, F.; Zolfigol, M. A.; Mohammadi, K. Phosphorus, Sulfur and Silicon 2003, 178, 1617. (k) Mirjalili, B. F.; Zolfigol, M. A.; Bamoniri, A.; Zarei, A. Phosphorus, Sulfur and Silicon 2003, 178, 1845.
- 21. Dictionary of Organic Compounds, 3th Ed.; Eyre and Spottiswoode: London, 1965.