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ABSTRACT

Reaction of benzyl alcohols with Oxone� and sodium bro-
mide in aqueous acetonitrile gave the corresponding benzal-
dehydes in excellent yields. However, electron-rich benzyl
alcohols afforded ring bromination products via bromodecar-
bonylation of the resulting benzaldehydes.
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The selective oxidation of benzylic alcohols to benzaldehydes is a
transformation of considerable importance in organic synthesis. Whilst
numerous reagents have been developed to effect this process, many of
them use greater than stoichiometric quantities of toxic heavy metals or
co-oxidants which severely handicap their applicability to large scale indus-
trial processes.[1,2] Also, the oxidation of organic compounds by hypohalite
salts or halogen is well known method in organic synthesis.[3] Especially,
oxidation of primary alcohols to aldehydes with hydrogen peroxide using
methyltrioxorhenium and bromide ions as cocatalysts,[4] and with oxoam-
monium salt and bromide ions[5] have been described.
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Recent reports have dealt with the use of a triple salt of potassium
peroxymonosulfate, potassium hydrogen sulfate, and potassium sulfate,
which is commercially available as Oxone� (2KHSO5�KHSO4�K2SO4), can
be used for the oxidation of alkenes,[6] arenes,[7] amines,[8] imine,[9] sulfides,[10]

selenides,[11] �-amino acids,[12] and acetals.[13] Also, there are reports in the
literature, where Oxone� is a useful oxidation reagent of alcohols and alde-
hydes. Examples include the conversions of 2-propanol to acetone,[6] ethanol
to ethyl acetate,[6] and benzaldehyde to benzoic acid.[6,14] Another example is
the oxidation of secondary alcohols to ketones in the presence of wet-
aluminium oxide in aprotic solvents.[15] Also, Bolm and co-workers have
demonstrated that the combination of TEMPO/Oxone�/Bu4NBr is an effec-
tive system for the oxidation of alcohols to aldehydes and ketones, including
benzylic ones.[16] Moreover, the use of Oxone� and aqueous sodium halides
was conducted as a convenient halogenating reagent to achieve oxidation of
�,�-enones,[17] bromination of pyrimidines,[18] and halogenation of
toluene.[6]

In previous paper, we have shown that sodium bromide combined
with Oxone� serves as effective bromodecarboxylation reagent of various
cinnamic acids[19] and halogenation of aromatic methyl ketones.[20] In the
course of our study to extend the scope of the Oxone�/NaBr reagent in
organic synthesis, we have found that this reagent facilitates the oxidation
of benzylic alcohols to benzaldehydes satisfactorily.

Optimization of the reaction conditions revealed that simple stirring a
solution of benzyl alcohol (1 equivalent), Oxone� (1 equivalent) and sodium
bromide (2 equivalent) in a 1 : 1 mixture of CH3CN/H2O effected the for-
mation of benzaldehyde in 87% isolated yield within 3 h. However, in the
absence of sodium bromide, the reaction did not proceed at all in 24 h at r.t.
Further studies showed that this oxidation method could be applied to a
wide range of benzylic alcohols and representative primary and secondary
alcohols as shown in Table 1. They are all known compounds and are
identified by their IR, 1HNMR and mass spectral data.

A plausible mechanism of the oxidation is shown in Scheme 1 based on
literatures. The oxidation of bromide ion by peroxymonosulfate ion would

Scheme 1.
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Table 1. Oxidation of Alcohols with Oxone� and NaBr

Entry Substrate Time (h) Product No. Yield (%)a

1 3 1 87

2 2 2 93

3 3 3 96

4 24 4 20b

5 1 5a 22

5b 44

5c 14

6 1 6a 63

6b 20

7 3 7 99

8 0.5 8 99

9 1 9 91

10 0.5 10a 80

10b 17

aYields are based on isolated products, characterized by IR, 1HNMR and GC-MS

spectra.
b65% alcohol was recovered.

BENZYL ALCOHOLS WITH OXONE� AND SODIUM BROMIDE 2117



give the hypobromous acid[16,21] and subsequent oxidation of alcohols
affords aldehydes and ketones.

The presence of electron-donating groups in the aromatic ring has little
influence on the oxidation rates but these are markedly lowered by intro-
ducing a strong electron-acceptor group. Thus, p-nitrobenzyl alcohol was
oxidized to aldehyde in only 20% yield over 24 h. Also, the reaction was
unsuccessful for electron-rich arene such as p-methoxybenzyl alcohol,
which presumably suffered complications due to competing bromodecarbo-
nylation of the resulting p-anisaldehyde which was accompanied by the for-
mation of 4-bromoanisole (44%) and 2,4-dibromoanisole (14%).[22]

Similarly, p-acetamidobenzyl alcohol gave bromodecarbonylation products,
4-bromoacetanilide (63%) and 2,4-dibromoacetanilide (20%).[22] In the
oxidation of 1-phenyl-1,2-ethanediol, the secondary benzylic alcoholic
function was oxidized with high selectivity to form 2-hydroxyacetophenone
in 99% yield. The oxidation of secondary alcohols afforded the correspond-
ing ketones in excellent yields. But, primary alcohol such as 1-pentanol was
convertedmainly into the dimeric ester, pentyl valerate, presumably via hemi-
acetal intermediate.[23]

In conclusion, we developed a simple oxidation method of benzyl
alcohols to benzaldehydes with Oxone�/NaBr in aqueous acetonitrile
under the mild conditions. This method provides an alternative, facile
preparation of benzaldehydes, since Oxone� and sodium bromide are
cheap, nontoxic, stable, and easy to handle.

EXPERIMENTAL

Melting points were determined in open capillaries with an
Electrothermal melting point apparatus and are uncorrected. Progress of
reactions were followed by TLC using silica gel with fluorescent indicator
coated on aluminium sheets. Infrared spectra were recorded on a Nicolet
Magna 550 FTIR spectrometer and 1HNMR spectra were measured on a
Varian Gemini 300 spectrometer in CDCl3 using TMS as an internal
standard. Mass spectra were obtained on a ThermoQuest Polaris Q mass
spectrometer operating at 70 eV.

General Procedure for the Oxidation of Alcohols with Oxone�

and Sodium Bromide

To a stirred solutions of alcohols (3mmol) in aqueous CH3CN (30mL,
1 : 1 by volume) was added NaBr (0.62 g, 6mmol) and Oxone� (1.84 g,
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3mmol). Reactions were continuously monitored by thin-layer chromato-
graphy and stirred at r.t. for the time indicated in Table 1. The reaction
mixture was quenched with aqueous sodium thiosulfate, and extracted with
ether (3� 30mL). The combined organic layers were washed with water,
dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The
residue was chromatographed on a silica gel column and eluted with
hexane–EtOAc 10 : 1 to give the products (Table 1).

Analytical Data for the Products

1: Liquid (Lit.[24] b.p. 178�C). IR (neat) cm�1: 1701, 1600, 1460, 1312,
1204, 827, 749; 1HNMR � 7.45–7.67 (m, 3H), 7.87–7.90 (m, 2H), 10.02
(s, 1H); MS m/z (rel. intensity) 106 (Mþ, 34), 105 (74), 77 (100), 51 (22).

2: M.p. 47–49�C (Lit.[24] 47.5�C). IR (KBr) cm�1: 1697, 1576, 1479,
1386, 1204, 1013, 811, 539, 477; 1HNMR � 7.53 (d, J¼ 8.5Hz, 2H), 7.83
(d, J¼ 8.5Hz, 2H), 9.99 (s, 1H); MS m/z (rel. intensity) 142 (Mþ, 17), 141
(58), 140 (Mþ, 46), 139 (100), 113 (7), 111 (19), 77 (6), 75 (13).

3: Liquid (Lit.[24] b.p. 204–205�C). IR (neat) cm�1: 1701, 1607, 1386,
1308, 1207, 1169, 847, 808; 1HNMR � 2.43 (s, 3H), 7.33 (d, J¼ 7.9Hz, 2H),
7.78 (d, J¼ 7.9Hz, 2H), 9.97 (s, 1H); MS m/z (rel. intensity) 120 (Mþ, 40),
119 (100), 91 (72), 65 (28).

4: M.p. 103–105�C (Lit.[24] 106�C). IR (KBr) cm�1: 1712, 1607, 1538,
1344, 1293, 1196, 854, 819, 738; 1HNMR � 8.08 (d, J¼ 8.5Hz, 2H), 8.41
(d, J¼ 8.5Hz, 2H), 10.17 (s, 1H); MS m/z (rel. intensity) 151 (Mþ, 44), 150
(100), 77 (13), 51 (16).

5a: Liquid (Lit.[24] b.p. 249.5�C). IR (neat) cm�1: 1685, 1600, 1507,
1312, 1262, 1161, 1025, 834; 1HNMR � 3.90 (s, 3H), 7.01 (d, J¼ 8.5Hz,
2H), 7.85 (d, J¼ 8.5Hz, 2H), 9.90 (s, 1H); MS m/z (rel. intensity) 136 (Mþ,
60), 135 (100), 107 (20), 92 (9), 77 (42), 63 (14).

5b: Liquid (Lit.[24] b.p. 215�C). IR (neat) cm�1: 1577, 1487, 1289, 1239,
1172, 1033, 823; 1HNMR � 3.77 (s, 3H), 6.78 (d, J¼ 8.9Hz, 2H), 7.37
(d, J¼ 8.9Hz, 2H); MS m/z (rel. intensity) 188 (Mþ, 98), 186 (Mþ, 100),
173 (31), 171 (30), 145 (23), 143 (26), 77 (31), 63 (47).

5c:M.p. 61–62�C (Lit.[25] 61–63�C). IR (KBr) cm�1: 1576, 1475, 1378,
1263, 1052, 807, 679, 617; 1HNMR � 3.87 (s, 3H), 6.77 (d, J¼ 8.8Hz, 1H),
7.37 (dd, J¼ 8.8, 2.3Hz, 1H), 7.66 (d, J¼ 2.3Hz, 1H); MS m/z (rel. inten-
sity) 268 (Mþ, 35), 266 (Mþ, 75), 264 (Mþ, 42), 253 (9), 251 (18), 249 (20),
225 (16), 223 (35), 221 (16), 172 (15), 170 (14), 63 (100).

6a:M.p. 165–167�C (Lit.[24] 168�C). IR (KBr) cm�1: 3293, 1677, 1603,
1526, 1483, 1394, 1305, 1254, 1013, 823, 737, 504; 1HNMR � 2.04 (s, 3H),
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7.47 (d, J¼ 8.9Hz, 2H), 7.56 (d, J¼ 8.9Hz, 2H), 10.07 (s, 1H); MS m/z (rel.
intensity) 215 (Mþ, 43), 213 (Mþ, 43), 173 (96), 171 (100), 92 (96), 65 (41).

6b: M.p. 142–143�C (Lit.[26] 144.7�C). IR (KBr) cm�1: 3289, 1658,
1572, 1522, 1460, 1367, 1293, 1040, 831, 602, 547; 1HNMR � 2.24 (s, 3H),
7.42 (dd, J¼ 8.9, 2.1Hz, 1H), 7.57 (s, 1H), 7.68 (d, J¼ 2.1Hz, 1H), 8.26
(d, J¼ 8.9Hz, 1H); MS m/z (rel. intensity) 295 (Mþ, 12), 293 (Mþ, 20), 291
(Mþ, 10), 253 (47), 251 (100), 249 (54), 214 (70), 212 (75), 172 (31), 170 (37),
91 (36), 90 (69), 63 (44).

7:M.p. 79–81�C (petroleum ether) (Lit.[24] 90�C). IR (KBr) cm�1: 3421,
1689, 1600, 1456, 1409, 1301, 1231, 1106, 970, 761, 683; 1HNMR � 3.51
(t, J¼ 4.6Hz, 1H), 4.89 (d, J¼ 4.6Hz, 2H), 7.49–7.67 (m, 3H), 7.92–7.95
(m, 2H); MS m/z (rel. intensity) 136 (Mþ, 1), 105 (77), 77 (100), 51 (17).

8: Liquid (Lit.[24] b.p. 202.6�C). IR (neat) cm�1: 1681, 1596, 1448, 1359,
1262, 951, 765, 687; 1HNMR � 2.60 (s, 3H), 7.43–7.59 (m, 3H), 7.94–7.98
(m, 2H); MS m/z (rel. intensity) 120 (Mþ, 16), 105 (100), 77 (23), 51 (9).

9: Liquid (Lit.[24] b.p. 155.6�C). IR (neat) cm�1: 2939, 1712, 1452,
1304, 1223, 1118, 904; 1HNMR � 1.73 (m, 2H), 1.85 (m, 4H), 2.34
(dd, J¼ 7.0, 6.4Hz, 4H); MS m/z (rel. intensity) 98 (Mþ, 67), 80 (12), 69
(26), 55 (100), 42 (20), 41 (24).

10a: Liquid (Lit.[24] b.p. 203.7�C). IR (neat) cm�1: 1732, 1648,
1619, 1262, 1180, 1106; 1HNMR � 0.91 (t, J¼ 6.7Hz, 3H), 0.92 (t, J¼
7.3Hz, 3H), 1.35 (m, 6H), 1.61 (m, 4H), 2.30 (t, J¼ 7.3Hz, 2H), 4.06 (t,
J¼ 6.7Hz, 2H); MS m/z (rel. intensity) 173 (Mþ

þ 1, 64), 172 (Mþ, 3), 103
(100), 85 (70), 75 (33), 70 (86), 57 (80), 55 (79).

10b: Liquid (Lit.[24] b.p. 186�C). IR (neat) cm�1: 2959, 2675, 1712,
1472, 1421, 1277, 1215, 943; 1HNMR � 0.93 (t, J¼ 7.3Hz, 3H), 1.37
(sextet, J¼ 7.6Hz, 2H), 1.63 (quintet, J¼ 7.6Hz, 2H), 2.35 (t, J¼ 7.6Hz,
2H); MS m/z (rel. intensity) 87 (2), 73 (28), 60 (100), 55 (13), no Mþ.
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