

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 6159-6163

Tetrahedron Letters

Oxidative rearrangements of arylalkenes with [hydroxy(tosyloxy)iodo]benzene in 95% methanol: a general, regiospecific synthesis of α-aryl ketones

Michael W. Justik and Gerald F. Koser*

Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA

Received 19 May 2004; accepted 7 June 2004 Available online 2 July 2004

Abstract—The treatment of arylalkenes with [hydroxy(tosyloxy)iodo]benzene in 95% methanol affords the corresponding α -aryl ketones. This oxidative rearrangement is general for acyclic and cyclic arylalkenes and permits regioselective syntheses of isomeric α -phenyl ketone pairs.

© 2004 Elsevier Ltd. All rights reserved.

Although the conversion of 1,1-diphenylethylene (1) to deoxybenzoin (2) with [hydroxy(tosyloxy)iodobenzene] (3, HTIB) in CH_2Cl_2 was first reported in 1981,^{1,2} the use of HTIB for oxidative rearrangements of arylalkenes has received only limited attention. Documented reactions of this type include rearrangements of phenylsubstituted allenes 4 to α,β -unsaturated aldehydes or ketones 5 with HTIB in CH₂Cl₂,³ and of chalcones 6 to β -ketoaldehyde acetals 7, either with HTIB in MeOH or with iodosylbenzene (PhI=O) in MeOH under acidic conditions (i.e., FSO₃H, MeSO₃H, or BF₃·Et₂O).^{4,5} Rearrangements of styrene to acetal 8a and of α -methylstyrene to ketal 8b with HTIB in MeOH have also been reported, but published yields of 8a and 8b refer to the iodosylbenzene-fluorosulfonic acid-MeOH system.⁴ The influence of methanol on reactions of styrene and chalcone with HTIB is indicated by the reported production of vicinal-ditosylates 9 when CH₂Cl₂ is the solvent.^{1,2} In the absence of solvent, styrene gives the geminal-ditosylate 10 with HTIB^{1,2} (Fig. 1).

We now report that the treatment of arylalkenes with HTIB in 95% methanol (i.e., 5% H₂O by volume) provides a versatile and convenient synthesis of α -aryl ketones; Eq. 1 and Tables 1–3. Such oxidative rearrangements proceed readily under ambient conditions

Keywords: Oxidative rearrangement; Hypervalent iodine.

and can be tested for completion with aqueous potassium iodide. For purposes of this study, reactions were conducted with 10 mmol of HTIB in conjunction with a slight excess of arylalkene. Arylalkenes were selected to explore variations in the nature of the aryl and alkyl groups; ring-size in 1-phenylcycloalkenes; and regiospecificity of α -aryl ketone production.

$$\begin{array}{c} R^{2} & Ar \\ R^{2} & \hline \\ H & R^{1} \end{array} \xrightarrow{Phl(OH)OTs} & Ar & O \\ 95\% \text{ MeOH} & R^{2} \\ \end{array}$$

Except for three commercially available substrates (i.e., α -methylstyrene, 1,1-diphenylethene, and 1-phenylcyclohexene), the 1-phenylcycloalkenes listed in Table 2 were prepared from cycloalkanones by a Grignardaddition/alcohol dehydration sequence, while the acylic arylalkenes listed in Tables 1, 2 and 3 were prepared by Wittig olefination of the corresponding 1-arylalkanones. A modified procedure based on the potassium *tert*butoxide method of Fitjer and Quabeck, was employed for the Wittig olefinations.⁶ Experimental procedures for the preparation and oxidative rearrangement of 2-phenyl-1-pentene are representative and given below.

2-Phenyl-1-pentene: Potassium tert-butoxide (4.48 g, 40.0 mmol) was added under argon to a mechanically stirred mixture of methyltriphenylphosphonium iodide (16.16 g, 40.0 mmol) and dry Et_2O (80 mL). The canary

^{*} Corresponding author. Tel.: +1-330-972-6066; fax: +1-330-972-7370; e-mail: koser@uakron.edu

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.06.029

Figure 1.

Table 1. Products of reactions of 2-arylpropenes with HTIB in aqueous methanol

Substituted propene	Product ^a	Time ^b	Yield (%)
		20 min	84
MeO	MeO	20 min	92
Me	Me	20 min	89
CI CI	CI	60 min	80
F	F	20 min	73
NC	NC	16 h	82
F ₃ C	F ₃ C	6 h	59
s	S O	20 min	80
		20 min	90
		20 min	86

^a Products were characterized by ¹H and ¹³C NMR, FT-IR and in most cases comparison of melting points of compounds or their derivatives with literature values.

^b Approximate reaction times; that is, times after which the reaction mixtures gave a negative KI test.

yellow mixture was stirred vigorously for 30 min. A solution of butyrophenone (5.19 g, 35.0 mmol) in Et₂O

was then introduced (5 min), and stirring was continued for 4 h at room temperature, during which time the color

Table 2. Products of reactions of phenylalkenes with HTIB in aqueous met	nanol
---	-------

Substituted propene	Product ^a	Time ^b	Yield(s) [%]
Ph (<i>n</i> -C ₇ H ₁₃)	Ph (<i>n</i> -C ₇ H ₁₃)	20 min	87
Ph (<i>n</i> -C ₁₂ H ₂₃)	Ph (<i>n</i> -C ₁₂ H ₂₃)	6 h	92
Ph Ph	Ph	20 min	72
Ph	Ph OMe OMe	20 min	41, 21
Ph	Ph O	20 min	74
Ph	Ph O	20 min	85
Ph	Ph 0	20 min	43
Ph	Ph	20 min	84
Ph	Ph O Ph Ph	1 h	53, 27
Ph	Ph O Ph	8 h	30, 22
Ph	Ph 	4 h	80

^a Products were characterized by ¹H and ¹³C NMR, FT-IR and in some cases comparison of melting points of compounds or their derivatives with literature values.

^bApproximate reaction times; that is, times after which the reaction mixtures gave a negative KI test.

was discharged. The grayish-white mixture was then filtered through Celite (10 g) and the filtrate concentrated to a light-yellow oil. Elution of the oil with hexanes through a pad of silica gel (30 g, sintered glass funnel) under aspirator vacuum and concentration of the eluent gave 2-phenyl-1-pentene as a colorless oil; yield, 4.04 g (79%); ¹H NMR (CDCl₃): δ 0.98 (t, 3H), 1.54 (sextet, 2H), 2.54 (t, 2H), 5.11 (s, 1H), 5.33 (s, 1H), 7.28–7.40 (m, 3H), 7.46 (d, 2H); ¹³C NMR (CDCl₃): δ 13.75, 21.32, 37.42, 112.11, 126.11, 127.21, 128.19, 141.70, 148.48; IR(neat) 1627 cm⁻¹ (C=C).

1-Phenyl-2-pentanone: Crystalline HTIB (3.92 g, 10 mmol) was added to a magnetically stirred solution of 2-phenyl-1-pentene (1.60 g, 10.9 mmol) in 95% methanol (45 mL). The HTIB dissolved rapidly (\sim 15 s) with mild heat evolution (41 °C) to give a colorless solution. After 20 min at room temperature, the solution was concen-

trated under aspirator vacuum, and the oily mixture that remained was partitioned between CH₂Cl₂ (40 mL) and H₂O (40 mL). The organic layer was washed with H₂O (2×40 mL) and brine (35 mL), dried over MgSO₄, and concentrated to a colorless oil (2.66 g). Flash column chromatography of the oil on silica gel with 10% EtOAc/ hexanes gave 1-phenyl-2-pentanone as a colorless oil; 1.43 g (88%); $R_f = 0.65$ (10% EtOAc/hexanes); ¹H NMR (CDCl₃): δ 0.87 (t, 3H), 1.58 (sextet, 2H), 2.42 (t, 2H), 3.68 (s, 2H), 7.20–7.36 (m, 5H); ¹³C NMR (CDCl₃): δ 13.43, 16.97, 43.74, 50.02, 126.94, 128.69, 129.41, 134.42, 208.56; IR(neat) 1713 cm⁻¹; semicarbazone, mp 175–176 °C [lit.⁷ mp 177 °C].

Some indication of the scope of α -aryl ketone synthesis by HTIB-oxidative rearrangement method is provided by the entries in Table 1. The 2-arylpropenes surveyed in this study include representatives with α -thienyl, α - and

Table	3.	Regios	pecific	syntheses	of iso	meric 1-	- and	3-phen	yl-2-alkanones
				-					-

Substituted propene	Product ^a	Time ^b	Yield (%)
Ph	Ph O	20 min	86
Ph	O Ph	2 h	80
Ph	Ph	20 min	88
Ph	O Ph	2 h	75
Ph	Ph O	20 min	88
Ph	O Ph	6 h	70

^a Products were characterized by ¹H and ¹³C NMR, FT-IR and in most cases comparison of melting points of compounds or their derivatives with literature values.

^bApproximate reaction times; that is, times after which the reaction mixtures gave a negative KI test.

β-naphthyl, and variously substituted phenyl groups. Hammet sigma constants of substituents in the phenyl series range from -0.268 (4-OMe) to +0.660 (4-CN), and although longer reaction times (i.e., hours vs minutes) were required when electron withdrawing groups were present, aryl acetones were obtained in all cases. Except for the 3-CF₃C₆H₄ analog (59% yield), isolated yields of aryl acetones for the entire arylpropene series ranged from 73% to 92%.

HTIB-induced rearrangements of various 1-alkyl-1phenylethylenes, including congeners with long alkyl chains and cycloalkyl groups (Table 2), typically resulted in high isolated yields (72–92%) of 1-phenyl-2alkanones. The relatively low yield (41%) of benzyl cyclopropyl ketone from 1-cyclopropyl-1-phenylethylene is due, at least in part, to the competing formation of 1-benzyl-1,2-dimethoxycyclobutane, presumably via a cyclopropylcarbinyl–cyclobutyl rearrangement or a bicyclobutonium intermediate.

Among the 1-phenylcycloalkenes that were tested with HTIB in 95% methanol (Table 2) 1-phenylcyclohexene

appears to be the optimum substrate for phenyl migration and gave 2-phenylcyclohexanone in 84% isolated yield. This may be contrasted with the thallium(III) nitrate-induced rearrangement of 1-phenylcyclohexene in methanol⁸ and the semipinacol rearrangement of 2-amino-1-phenylcyclohexanol,⁹ both of which afford cyclopentyl phenyl ketone.

With the seven- and eight-membered 1-phenylcycloalkenes ring contraction was competitive with aryl migration in the HTIB-95% methanol system. For example, 1-phenylcycloheptene gave a mixture of cyclohexyl phenyl ketone (27% yield) and 2-phenylcycloheptanone (53% yield), easily separated by column chromatography on silica gel with EtOAc/hexanes. The reaction of 1-phenylcyclopentene with HTIB in 95% methanol stopped at the dimethylketal stage and was unique in this regard. However hydrolysis of the ketal allowed isolation of 2-phenylcyclopentanone in 43% yield. Finally, 1-phenylindene did not undergo an HTIB-induced oxidative rearrangement in 95% methanol, but was instead converted to 1-phenyl-2-indenyl(phenyl)iodonium tosylate (80% yield).

Oxidative rearrangements of the 2-phenyl-2-alkenes shown in Table 3 proceeded more slowly than those of their 2-phenyl-1-alkene isomers. However after 1, or 6 h, 3-phenyl-2-alkanones were isolated in yields of 70–80%. Hence, by appropriate selection of phenylalkene pairs, regiospecific syntheses of isomeric 1-phenyl- and 3-phenyl-2-alkanones were accomplished. For example, 2-phenyl-1-pentene afforded 1-phenyl-2-pentanone (88% yield) with HTIB in 95% methanol, while 2-phenyl-2-pentene gave 3-phenyl-2-pentanone (75% yield), neither ketone being contaminated with the other isomer.

A general mechanism for the production of α -aryl ketones from arylalkenes with HTIB in 95% methanol, similar to that proposed by Moriarty and co-workers for the chalcone and styrene rearrangements discussed earlier is illustrated in Scheme 1. The intermediate existence of phenyl(hydroxy)iodanyl carbocations, **11**, and phenyl(β -methoxyalkyl)iodonium tosylates, **12**, in such reactions, coupled with the high nucleofugacity of iodobenzene, provides a comprehensive rationale for aryl migration, ring contractions of the higher

phenylcycloalkenes, ring expansion of 1-cyclopropyl-1phenylethylene, vinyliodonium salt formation from 1-phenylindene, and qualitative observations on reaction time.

References and notes

- 1. Koser, G. F.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1981, 46, 4324–4326.
- Rebrovic, L.; Koser, G. F. J. Org. Chem. 1984, 49, 2462– 2472.
- Moriarty, R. M.; Hopkins, T. E.; Vaid, R. K.; Vaid, B. K.; Levy, S. G. Synthesis 1992, 847–849.
- Moriarty, R. M.; Khosrowshahi, J. S.; Prakash, O. Tetrahedron Lett. 1985, 26, 2961–2964.
- Kawamura, Y.; Maruyama, M.; Tokuoka, T.; Tsukayama, M. Synthesis 2002, 2490–2496.
- 6. Fitjer, L.; Quabeck, U. Synth. Commun. 1985, 15, 855-864.
- Dorofeenko, G. N.; Mezheritskaya, L. V.; Matskovskaya, E. S. J. Zh. Org. Khim. 1975, 11, 2424–2427.
- McKillop, A.; Hunt, J. D.; Kienzle, F.; Bigham, E.; Taylor, E. C. J. Am. Chem. Soc. 1973, 95, 3635–3640.
- Curtin, D. Y.; Schmuckler, S. J. Am. Chem. Soc. 1955, 77, 1105–1110.