⁹⁴McElvain and Stevens, I. Am. Chem. Soc., 68, 1917 (1946); McElvain and Venerable, ibid., 72, 1661 (1950). ⁹⁵ Avy, Bull. soc. chim. France, (4) 49, 12 (1931). ⁹⁶ Brand and Schreber, Ber., 75, 156 (1942). 97 Palomaa and Kantola, Ber., 65, 1593 (1932). 98 Dev. I. Chem. Soc., 1057 (1937). 99 Rotbart, Ann. chim., (11) 1, 458 (1934). ¹⁰⁰ Witzemann et al., Org. Syntheses, Coll. Vol. II, 307 (1943). ¹⁰¹ Shriner and Kleiderer, Org. Syntheses, Coll. Vol. II, 538 (1943). ¹⁰² Allen and Clark, Org. Syntheses, 24, 3 (1944); Woodward and Doering, I. Am. Chem. Soc., 67, 868 (1945). ¹⁰³ Johnson et al., J. Am. Chem. Soc., 69, 2364 (1947). ¹⁰⁴ Albers, Kallischnigg, and Schmidt, Ber., 77, 623 (1944). 105 McElvain and Clarke, J. Am. Chem. Soc., 69, 2657 (1947). ¹⁰⁶ McElvain and Clarke, J. Am. Chem. Soc., 69, 2661 (1947). ¹⁰⁷ Uhle and Jacobs, J. Org. Chem., 10, 81 (1945); Hartung and Adkins, J. Am. Chem. Soc., 69, 1535 (1947). ¹⁰⁸ Wibaut and Beets, Rec. trav. chim., 59, 653 (1940). ¹⁰⁹ Scheibler and Depner, Ber., 68, 2151 (1935). ¹¹⁰ Bergel, Morrison, and Rinderknecht, J. Chem. Soc., 265 (1944). ¹¹¹ Magnani and McElvain, J. Am. Chem. Soc., 60, 2210 (1938). ¹¹² Feazel and Berl, J. Am. Chem. Soc., 72, 2278 (1950). ¹¹³ Kaslow and Lawton, J. Am. Chem. Soc., 72, 1723 (1950). ¹¹⁴Vogel and Schinz, Helv. Chim. Acta, 33, 127 (1950). ¹¹⁵ McCusker and Vogt, J. Am. Chem. Soc., 59, 1307 (1937). ¹¹⁶ McElvain, Chem. Revs., 45, 453 (1949). ¹¹⁷ Price and Pappalardo, I. Am. Chem. Soc., 72, 2613 (1950). ¹¹⁸Lunt and Sondheimer, J. Chem. Soc., 3361 (1950). ¹¹⁹ Icke et al., Org. Syntheses, 29, 6 (1949). 120 Janetzky, Verkade, and Meerburg, Rec. trav. chim., 66, 321 (1947). ¹²¹ Deno, J. Am. Chem. Soc., 69, 2233 (1947). ¹²² Kraus, Ann. chim., (12) 4, 817 (1949).

¹²³ Willimann and Schinz, Helv. Chim. Acta, 32, 2151 (1949).

9

Aldehydes

CONTENTS

PAGE METHOD 140. Formylation with Carbon Monoxide (Gattermann-Koch) 280 280 141. Formulation with Cyano Compounds (Gattermann) 142. Formylation with N-Methylformanilide 281 143. Formylation of Phenols with Chloroform (Reimer-Tiemann) 281 144. Formylation of Phenols (or Amines) with Hexamine (Duff) 282 282 145. Hydroformylation of Unsaturated Compounds 146. Formylation of Ketones with Formic Esters 282 282 147. Interaction of Halomethyl Compounds and Hexamine (Sommelet) ... 148. Interaction of Benzyl Halides and Sodium 2-Propanenitronate 283 283 149. Decomposition of Arylsulfonohydrazides 150. Cleavage of Schiff Bases 284 151. Hydrolysis of gem-Dihalides 285 152. Interaction of Pyridinium Salts and p-Nitrosodimethylaniline 285 153. Hydrolysis of 2-Alkoxy-3,4-dihydro-1,2-pyrans 286 154. Hydrolysis of Aldehyde Derivatives 286 155. Oxidation of Aromatic Side Chains 287 156. Oxidation of Olefinic Compounds 288 288 157. Oxidation of Methyl Ketones by Selenium Dioxide 158. Oxidation of Primary Alcohols 289 159. Dehydrogenation of Primary Alcohols 290 160. Oxidative Cleavage of Glycols 290 291 161. Selective Reduction of Olefinic Aldehydes 291 162. Reduction of Acvl Chlorides (Rosenmund) 163. Reduction of Thiol Esters 292 164. Reduction of Nitriles (Stephen) 292 165. Interaction of Grignard Reagents and Orthoformic Esters 293 166. Interaction of Grignard Reagents and Ethoxymethyleneaniline 293 167. Decomposition of Glycol Monoalkyl Ethers 294 168. Thermal Decomposition of Acids 294 169. Decomposition of a-Hydroxy Acids 294 295 170, Decarboxylation of a-Keto Acids 295 171. Decarboxylation of Glycidic Acids 172. Hydrolysis of Olefin Dibromides 296 296 173. Degradation of Acid Amides and Azides 296 174. Acid Treatment of Primary Acinitroparaffins 175. Isomerization of Unsaturated Alcohols 296 297 176. Condensation of Aromatic Hydrocarbons with Chloral 297 177. Formylation of Acetylenes

Ch. 9

CONTENTS (continued)

METHOD	PAGE
Table 25. Aldehydes	298
Table 26. Dialdehydes	303
Table 27. Olefinic Aldehydes	303
Table 28. Acetylenic Aldehydes	305
Table 29. Halo Aldehydes	305
Table 30. Hydroxy Aldehydes	306
Table 31. Aldo Ethers	307
References	309

A large number of methods exist for the preparation of aldehydes, many of which are very limited in their scope. The more general methods are given here. An excellent review on the synthesis of aromatic aldehydes has been published.¹²⁰

140. Formylation with Carbon Monoxide (Gattermann-Koch)

$$ArH + CO + HCl \xrightarrow{AiCl_3-CuCl_2} ArCHO$$

Aromatic aldehydes are prepared by passing carbon monoxide and dry hydrogen chloride through an ether or nitrobenzene solution of an aromatic hydrocarbon in the presence of a catalyst, commonly aluminum chloride with cuprous chloride as a carrier. The process is illustrated by the synthesis of *p*-tolualdehyde (51%).⁷⁰ A convenient procedure for obtaining an equimolar mixture of anhydrous hydrogen chloride and carbon monoxide consists in dropping chlorosulfonic acid on formic acid,²⁶⁶ viz.,

 $HSO_3Cl + HCO_2H \rightarrow HCl + CO + H_2SO_4$

In most reactions at atmospheric pressure the yields are about 30-50%, whereas at a high pressure of carbon monoxide the yields are 80-90%.⁷³ This method is particularly suitable for the reaction of mono- and polyalkylbenzenes. It is not applicable to phenols and aromatic ethers. The reaction has been considered in detail.²⁴³

141. Formylation with Cyano Compounds (Gattermann)

$$ArH + HCN + HCl \xrightarrow{ZnCl_2} ArCH = NH \cdot HCl \xrightarrow{H_2O} ArCHO$$

A mixture of hydrogen cyanide and hydrogen chloride in the presence of zinc chloride reacts with an aromatic compound to form an aldimine hydrochloride which on hydrolysis produces the corresponding aldehyde. The reaction can be carried out more conveniently and in equally good yields by substituting zinc cyanide for the hydrogen cyanide (70-90%).^{71, 72} Potassium chloride impurity in this catalyst is necessary.⁷⁵ Sodium cyanide has also been used.⁷⁹ With these modifications, phenols⁷¹ and ethers⁷² as well as hydrocarbons^{74, 78, 79} react (cf. method 140).

142. Formylation with N-Methylformanilide

 $ArH + C_6H_5 N(CH_3)CHO \xrightarrow{POCl_3} ArCHO + C_6H_5 NHCH_3$

This synthesis is applicable to many aromatic compounds, including alkoxyl or N,N-dimethylamino derivatives of benzene¹⁰³ and naphthalene,¹⁰¹ naphthols,¹⁰⁶ indole,¹⁰⁵ and certain reactive hydrocarbons, namely, anthracene,¹⁰¹ 1,2-benzanthracene,¹⁰² 3,4-benzpyrene,¹⁰² and pyrene.¹⁰⁴ The high-melting polynuclear hydrocarbons react best in the presence of a solvent, such as o-dichlorobenzene. For example, a solution of anthracene, methyl formanilide, and phosphorus oxychloride in o-dichlorobenzene is heated 1 hour at 90–95°; then an aqueous solution of sodium acetate is added, and the solvent and N-methylaniline are removed by steam distillation. The solid residue is readily purified to yield 9-anthraldehyde (84%).¹⁰¹ With liquid or low-melting compounds a solvent is not required.

The conversion of thiophene and its derivatives to the corresponding aldehydes by this procedure has been extensively studied, the yield of 2-thiophenealdehyde being 76%.²⁶⁰

unsym-Diarylethylenes react in a similar manner to yield unsaturated aldehydes, $Ar_2C = CHCHO$.²⁰²

Other catalysts and reagents have been used. In the presence of aluminum chloride, 2-naphthol reacts with formamide to give 2-naphthol-1-aldehyde (45%).¹⁰⁶

143. Formylation of Phenols with Chloroform (Reimer-Tiemann)

$$C_6H_5 OH + CHCl_3 \xrightarrow{NaOH;} o \text{ and } p \text{-HOC}_6H_4CHO$$

Substituted phenols react with chloroform and alkali in alcohol solution to yield o- and p-hydroxybenzaldehydes. The yields are often less than 50%, the para- isomer predominating.⁸¹ The procedure involves heating an alkaline ethanolic solution of the reactants for several hours, followed by acidification and isolation of the product by steam distillation or crystallization. An example is the synthesis of 2-hydroxy-1-naphthaldehyde (48%).⁸⁰

144. Formylation of Phenols (or Amines) with Hexamine (Duff)

 $C_6H_5OH + (CH_2)_6N_4 \rightarrow o-HOC_6H_4CH = NCH_3 \rightarrow o-HOC_6H_4CHO$

This reaction is readily accomplished by heating the phenolic compound at $150-160^{\circ}$ for 10 to 30 minutes with a mixture of glycerol, boric acid, and hexamine. The phenolic aldehyde is liberated by acidification and steam distillation. By this general procedure, sixteen phenolic aldehydes have been prepared. Although the yields are only 15-20%, the method requires little time and furnishes a reasonably pure product which is the *ortho* isomer⁹⁶ (cf. method 143).

The method has been extended to the formation of p-dialkylaminobenzaldehydes in 35-45% yields.⁹⁹

145. Hydroformylation of Unsaturated Compounds

$$RCH = CH_2 + CO + H_2 \xrightarrow{Pressure} RCH_2CH_2CHO$$

Addition of carbon monoxide and hydrogen to an alkene linkage in the presence of cobalt catalysts gives aldehydes in an average yield of 50%.¹⁹⁰ The reactions may be carried out in the usual hydrogenation apparatus. The poisonous properties of carbon monoxide and cobalt carbonyls call for considerable care. Compounds made by hydroformylation include cyclopentanealdehyde from cyclopentene (65%), β -carbethoxy-propionaldehyde from ethyl acrylate (74%), and ethyl β -formylbutyrate from ethyl crotonate (71%).

146. Formylation of Ketones with Formic Esters

$$CH_{3}COCH_{2}CH_{3} \xrightarrow{HCO_{2}C_{2}H_{3}} CH_{3}COCH(CHO)CH_{3}$$

Acylation of ketones having reactive methylene groups by higher esters has been shown to be an excellent method for preparing β -diketones (method 203). If the acylating ester is an alkyl formate, then a keto aldehyde is formed (50-80%).¹⁷¹⁻¹⁷⁴ The formylation is simply brought about by adding sodium metal to a mixture of the ketone and ester in anhydrous ether. Oftentimes, the product is isolated as the sodium salt of the hydroxymethylene form. The point of attack is unpredictable in unsymmetrical ketones, CH₃COCH₂R.^{173, 174}

147. Interaction of Halomethyl Compounds and Hexamine (Sommelet)

$$A_{r}CH_{2}X \xrightarrow{(CH_{2})_{k}N_{4}} [A_{r}CH_{2}(CH_{2})_{k}N_{4}]^{+}CI^{-} \xrightarrow{H_{2}O} A_{r}CHO$$

Substituted benzyl halides react with hexamine in boiling alcohol to form addition compounds which decompose on heating with water to give aldehydes.⁸⁵⁻⁹⁰ An excellent discussion of the reaction has been presented, and improvements in the conditions have been made.²⁴⁴ Aqueous acetic acid (1:1) is recommended as solvent for the entire process, and there is no need to isolate the intermediate salt. The procedure is illustrated by the synthesis of 1-naphthaldehyde (82%).²⁴⁵ In other instances, the addition compound is first prepared in chloroform solution, isolated, and then decomposed with water or dilute acetic acid, as in the synthesis of 2-thiophenaldehyde (53%).⁸⁴

The reaction is applicable to the formation of m- and p-dialdehydes, but not the *ortho* isomer, from the *bis*-(chloromethyl)-benzenes,²⁴⁶ as well as aldehyde esters, e.g., *p*-carbomethoxybenzaldehyde,⁸⁵ and halo aldehydes, e.g., 1-bromo-2-naphthaldehyde.⁸⁷

A somewhat similar reaction is the conversion of substituted benzylamines to the corresponding benzaldehydes by treating their formaldehyde condensation product with hexamine.⁹⁷

148. Interaction of Benzyl Halides and Sodium 2-Propanenitronate

 $A_{r}CH_{2}Br + [(CH_{3})_{2}CNO_{2}]^{-}Na^{+} \rightarrow A_{r}CHO + (CH_{3})_{2}C = NOH + NaBr$

A general procedure for the conversion of p-substituted benzyl halides to the corresponding benzaldehydes consists in treating the halide with sodium 2-propanenitronate suspended in absolute ethanol. The resulting instable nitronic ester breaks down into acetoxime and the carbonyl compound. The yields are in the range 68-77% for benzaldehydes having a methyl, bromo, carbomethoxyl, cyano, or trifluoromethyl group in the *para* position. However, *p*-nitrobenzyl chloride undergoes C-alkylation to furnish the stable substituted nitropropane, p-NO₂C₆H₄CH₂C(CH₃)₂NO₂.²⁶¹ The reaction has been extended to the synthesis of o-tolualdehyde (73%).²⁶²

149. Decomposition of Arylsulfonohydrazides

 $A_{r}CONHNH_{2} \xrightarrow{C_{6}H_{8}SO_{2}C1} A_{r}CONHNHSO_{2}C_{6}H_{5} \xrightarrow{N_{B_{2}}CO_{3}} A_{r}CHO$

Aromatic and heterocyclic aldehydes have been prepared from hydrazides, via the arylsulfonyl derivative, in 50-65%¹²³ and 20-40% yields,¹²⁴ respectively; the method fails in the aliphatic series. The hydrazide is treated with benzenesulfonyl chloride in pyridine, and the subsequent product is isolated by precipitation with water and decomposed by heating with sodium carbonate in ethylene glycol or glycerol at 160°. Benzhydrazides in small quantities have been oxidized to the aldehydes with potassium ferricyanide in excess ammonium hydroxide (30-60%).¹²⁷

150. Cleavage of Schiff Bases

 $ArCH = NR + H_2O \rightarrow ArCHO + RNH_2$

Several preparations of aldehydes have been developed that involve the formation and cleavage of Schiff bases. The condensation of anilines or phenols with formaldehyde and *p*-nitrosodimethylaniline leads to such intermediates. These substances can be isolated and converted by an exchange reaction with formaldehyde in acetic acid to the corresponding aldehydes. *p*-Dimethylaminobenzaldehyde is made in this manner in 59% yield.¹⁸⁷

 $(CH_3)_2NC_6H_5 \xrightarrow{p-(CH_3)_2NC_6H_4NO} p-(CH_3)_2NC_6H_4CH = NC_6H_4N(CH_3)_2 \xrightarrow{CH_2O} p-(CH_3)_2NC_6H_4CHO$

When a methyl group on an aromatic nucleus is activated by a nitro group in the ortho or para position, condensation with nitrosobenzenes can occur to give a Schiff base; subsequent hydrolysis furnishes the aldehyde. An example is the synthesis of 2,4-dinitrobenzaldehyde (32%).¹⁸⁶

 $(\mathrm{NO}_2)_2\mathrm{C}_6\mathrm{H}_3\mathrm{CH}_3 \xrightarrow{p-(\mathrm{CH}_3)_2\mathrm{NC}_6\mathrm{H}_4\mathrm{NO}} (\mathrm{NO}_2)_2\mathrm{C}_6\mathrm{H}_3\mathrm{CH} \cong \mathrm{NC}_6\mathrm{H}_4\mathrm{N}(\mathrm{CH}_3)_2 \xrightarrow{\mathrm{H}_2\mathrm{O}}$

(NO₂)₂C₆H₃CHO

Condensation of diethylaniline and formaldehyde in the presence of sulfanilic acid gives the structure

p-(CH₃CH₂)₂NC₆H₄CH₂NCH₆H₄SO₃H,

which can be isolated and oxidized with potassium dichromate to the benzylidene compound; the latter on alkaline hydrolysis gives p-diethyl-aminobenzaldehyde in 50% yield.¹⁸⁸

Imino chlorides, which are readily prepared by the action of phosphorus pentachloride on anilides, are reduced by anhydrous stannous chloride to imino intermediates which on hydrolysis yield aromatic aldehydes (50-90%); applications in the aliphatic series are poorly described.¹²²⁻¹³²

C1

$$\operatorname{RCONHC}_{6}H_{5} \xrightarrow{\operatorname{PCl}_{5}} \operatorname{RC} = \operatorname{NC}_{6}H_{5} \xrightarrow{\operatorname{SnCl}_{2}} \operatorname{RC} = \operatorname{NC}_{6}H_{5} \xrightarrow{\operatorname{H}_{2}O} \operatorname{RCHO}$$

ы

In most cases, the crude imino chloride is treated directly by adding it to a solution of stannous chloride saturated with dry hydrogen chloride; the aldehyde is then liberated by steam distillation. The procedure is illustrated by the synthesis of o-tolualdehyde (70%).¹²⁸ Imino chlorides have also been prepared by treatment of ketoximes with phosphorus pentachloride, viz., RR'C= NOH \rightarrow RCCl= NR', in preparations of benzaldehyde and p-chlorobenzaldehyde (70-85%).¹³³ As in the Stephen reaction (method 164), groups ortho to the imino chloride group hinder the reaction. Schiff bases from other sources furnish aldehydes (methods 166 and 170).

151. Hydrolysis of gem-Dihalides

$$ArCH_3 \xrightarrow{X_3} ArCHX_2 \xrightarrow{H_2O} ArCHO$$

Toluenes substituted with chloro, bromo, fluoro, or cyano groups can be dichlorinated or dibrominated and the resulting benzal halides hydrolyzed directly to the corresponding aldehydes in the presence of calcium carbonate or sulfuric acid (50-70%).^{135, 136} o- and p-Xylene have been converted to the corresponding dialdehydes.^{139, 140} In the halogenation of certain cresols, the carbonate or acetate esters are used in order to prevent nuclear halogenation.^{141, 216}

Aliphatic gem-dihalides require more vigorous conditions for hydrolysis than do the benzal halides. Examples are found in the treatment of certain 1,1-dichloroalkanes, like 1,1-dichloro-3-methylbutane and 1,1dichloro-3,3-dimethylbutane, with water and, in some cases, magnesium oxide for 4 hours at 200-300°. The aldehydes are formed in 60-96% yields (cf. method 222).

152. Interaction of Pyridinium Salts and p-Nitrosodimethylaniline

$$ArCH_{2}COCH_{2}CI \xrightarrow{P \text{ yridine}} [ArCH_{2}COCH_{2}NC_{3}H_{3}]Br$$

$$\downarrow (CH_{3})_{2}NC_{6}H_{4}NO$$

$$ArCH_{2}COCHO \xleftarrow{H^{+}}_{H_{2}O} ArCH_{2}COCH = NOC_{6}H_{4}N(CH_{3})_{2}$$

Compounds containing reactive halogens (ArCH=CHCH₂X or ArCOCH₂X) readily form pyridinium salts. Rearrangement of these prod-

METHODS 154-155

ALDEHYDES

Ch. 9

ucts with *p*-nitrosodimethylaniline to a nitrone followed by hydrolysis with acid gives α , β -unsaturated aldehydes or substituted glyoxals.¹⁸⁹ Substituted benzyl halides, ArCH₂X, undergo the series of reactions to give the corresponding aldehydes, ArCHO. Terephthaldehyde is made in this way in a 70% over-all yield.¹⁸⁹

153. Hydrolysis of 2-Alkoxy-3,4-dihydro-1,2-pyrans

Hydrolysis of 2-alkoxy-3,4-dihydro-1,2-pyrans with dilute hydrochloric acid furnishes a convenient synthesis of glutaraldehyde (R = H) and other 1,5-dicarbonyl compounds. The starting materials are obtained by the 1,4-addition of vinyl ethers to α , β -unsaturated carbonyl compounds. The wide selection of diene systems includes acrolein, crotonaldehyde, methacrolein, cinnamaldehyde, β -furylacrolein, methyl vinyl ketone, benzalacetone, and benzalacetophenone. Ethyl vinyl ether is preferred as the dienophile. The yields in the cyclization step are in the range of 25-87% and in the subsequent hydrolysis step, 59-85%.²⁶⁵

154. Hydrolysis of Aldehyde Derivatives

 $RCH = NOH + C_6H_5CHO \rightarrow RCHO + C_6H_5CH = NOH$

Oftentimes, aldehydes are isolated and purified as their derivatives, and their regeneration is then of importance (cf. method 195). The fission of the oxime, semicarbazone, hydrazone, etc., may be accomplished by acid hydrolysis or by an exchange of the nitrogenous moiety with another carbonyl compound, such as benzaldehyde, for which it has a greater affinity.

Semicarbazones of volatile aldehydes may be hydrolyzed by steam distillation in the presence of phthalic anhydride.¹⁰⁷ A synthetic route for aromatic aldehydes involves the hydrolysis of semicarbazones which have been prepared by the interaction of dithio acids and semicarbazide hydrochloride in pyridine solution.^{17, 28}

$$ArCSSH \xrightarrow{H_2NNHCONH_2} ArCH = NNHCONH_2 \xrightarrow{H_2O} ArCHO$$

The hydrolysis of succinaldehyde dioxime must be carried out with care because of the instability of the dialdehyde. This step has been accomplished in 60% yield by treating the dioxime with ethyl nitrite in dioxane or with sodium nitrite in dilute sulfuric acid.¹⁰⁸

The adducts formed from amine bisulfites and aldehydes are readily purified by crystallization from organic solvents and, like the sodium bisulfite addition products, are readily decomposed by the action of dilute acids.¹²²

Acetals are readily hydrolyzed by dilute mineral acids; however, the yields are not always satisfactory. These substances are not affected by alkaline reagents. The sensitive dl-glyceraldehyde acetal is converted to its aldehyde in 80% yield by the action of dilute sulfuric acid under mild conditions.²³⁸ Other procedures are illustrated by the treatment of acetals which are formed by the interaction of Grignard reagents and orthoformic esters (method 165).

Olefinic aldebydes have been prepared by bromination of the diethylacetal derivatives followed by dehydrobromination (cf. Acetals and Ketals); the unsaturated aldehydes are readily liberated by mild acid treatment of their acetals.⁶ Alkoxy aldebydes have also been synthesized through acetal intermediates, which in turn are prepared from sodium alkoxides and bromoacetals.¹¹¹

a-Hydroxy aldehydes have been prepared by hydrolysis of the oximes resulting from the action of Grignard reagents on certain isonitroso ketones.¹⁷⁵

$$RCH_2COCH = NOH \xrightarrow{R'Mgx} R'RCHC(OH)CH = NOH \xrightarrow{H_2O} R'RCHC(OH)CHO$$

155. Oxidation of Aromatic Side Chains

$$ArCH_3 \xrightarrow[(CH_3CO)_2O]{CH_3CO} ArCH(OCOCH_3)_2 \xrightarrow[H_2O]{HCI} ArCHC$$

Oxidation of the methyl group in substituted toluenes with chromium trioxide in acetic anhydride forms crystalline diacetates, which are stable to further oxidation. These compounds are readily hydrolyzed in acid solution to the corresponding aldehydes (40-50% over-all).^{149, 150} The procedure is generally applicable to the preparation of benzaldehydes carrying nitro, halo, and cyano substituents.

Other oxidative procedures have been described. The heterogeneous liquid-phase oxidation of toluene with manganese dioxide in 65% sulfuric acid is important in the production of benzaldehyde and salicylaldehyde. An example of its application in the laboratory is found in the preparation of 3,5-dimethylbenzaldehyde (48%) from mesitylene.¹⁵³ In a comparison

286

Ch. 9

of other oxidants, chromyl chloride is outstanding; however, it must be employed with care. The hydrocarbon is added slowly to a chloroform solution of this reagent, and the addition complex is carefully decomposed with dilute sulfurous acid to give the aldehyde. Yields range up to 80% (Etard reaction).²¹⁵ The internal oxidation-reduction of nitrotoluenes can be brought about by refluxing with alkaline sodium polysulfide, e.g., *p*aminobenzaldehyde from *p*-nitrotoluene (75%).¹⁵⁶

Benzyl halides have been oxidized directly with selenium dioxide⁹¹ or copper nitrate.⁹²

156. Oxidation of Olefinic Compounds

$$RCH = CH_2 \xrightarrow[H_2O]{O_3;} RCHO + CH_2O$$

Aldehydes result from the decomposition of certain ozonides. The technique is similar to that used for the preparation of ketones (method 182). High yields are obtained by catalytic hydrogenation of the ozonides.¹¹⁴ This step coupled with Grignard and dehydration reactions has been used as a procedure for the degradation of an aldehyde to its next lower homolog, viz.,

$$\operatorname{RCH}_{2}\operatorname{CHO} \xrightarrow{\operatorname{C}_{6}H_{5}\operatorname{Mg}X;}_{\operatorname{H}_{2}\operatorname{O}} \operatorname{RCH}_{2}\operatorname{CHOHC}_{6}H_{5} \xrightarrow{-\operatorname{H}_{2}\operatorname{O}} \operatorname{RCH} \cong \operatorname{CHC}_{6}H_{5} \xrightarrow{\operatorname{O}_{3};}_{\operatorname{H}_{2}} \operatorname{RCHO}$$

Dialdehydes result when cyclic olefins are ozonized.¹¹⁵ Improved directions for the ozonolysis of unsaturated esters in glacial acetic acid to yield aldehyde esters have been given.¹¹⁶ The same procedure is applied to the preparation of aliphatic aldehydes containing halo,¹¹⁷ hydroxyl,¹¹⁸ and ether groups.¹²¹

Oxidation of olefinic side chains with ozone to form aromatic aldehydes gives erratic results and therefore other oxidants are employed.¹²⁰ For this purpose, the most widely used oxidant is nitrobenzene in dilute alkali; the mixture is allowed to react at moderate temperatures for several hours. Thus, hydroxy benzaldehydes may be obtained from propenylphenols, which in turn are readily prepared by the Claisen rearrangement of O-alkyl ethers (method 100). Sodium dichromate in the presence of sulfanilic acid, which removes the aldehyde as it is formed, gives yields as high as 86% in the oxidation of isoeugenol and isosafrole.²⁶⁷

157. Oxidation of Methyl Ketones by Selenium Dioxide

$$ArCOCH_3 \xrightarrow{SeO_2} ArCOCHO$$

The preparation of certain substituted benzils by treatment of aryl benzyl ketones with selenium dioxide is discussed later (method 183). If a methyl ketone is treated under these conditions, the methyl group is oxidized to an aldehyde group.¹⁷⁶ The reaction is carried out by refluxing a mixture of selenium dioxide and ketone in dioxane or alcohol for several hours. Preparative details are found in the procedures for phenylglyoxal (72%)¹⁷⁷ and glyoxal (74%);¹⁷⁸ the latter is isolated as its bisulfite derivative.

4-Methylquinoline and 1-methylisoquinoline, which have reactive methyl groups, are converted to quinoline-4-aldehyde (61%) and isoquinaldehyde (42%), respectively, by means of this reagent.^{183, 184}

158. Oxidation of Primary Alcohols

$$RCH_2OH \xrightarrow{(0)} RCHO$$

Controlled oxidation of a primary alcohol with a mixture of sulfuric and chromic acids gives the corresponding aldehyde. In the preparation of low-molecular-weight aldehydes, an aqueous medium is used and the product is removed by steam distillation, thus preventing further oxidation. This procedure is well illustrated by the preparation of propion-aldehyde $(49\%)^1$ and isovaleraldehyde (60%).² Certain benzyl alcohols are dissolved in aqueous acetic acid for chromic acid oxidation.⁴ Ole-*finic aldehydes* are produced by a rapid low-temperature $(5-20^\circ)$ oxidative procedure, as illustrated by the preparation of 2-heptenal (75%) from 2-heptenol.¹⁰ Aldehyde ethers such as methoxyacetaldehyde and ethoxy-acetaldehyde have been prepared by the chromic acid oxidation of the corresponding alcohols in 17% and 10% yields, respectively.¹¹

Aldehydes have been formed from alcohols by the use of other oxidizing agents. Dihydroxyacetone has been oxidized with excess cupric acetate to *hydroxypyruvic aldebyde* in 87% yield.¹² *p*-Cyanobenzyl alcohol treated at 0° with a chloroform solution of nitrogen tetroxide gives practically pure *p*-cyanobenzaldehyde (90%).¹³ Aromatic alcohols containing nitro groups have been oxidized to the corresponding *nitro aldebydes* with concentrated nitric acid, e.g., o- and *p*-nitrobenzaldehydes (80-85%).¹⁴ *m*-Nitrobenzenesulfonic acid in basic media has been used for the oxidation of substituted benzyl alcohols, most satisfactorily for the watersoluble phenolic benzyl alcohols.²¹⁷ Selenium dioxide, or less effectively tellurium dioxide, oxidizes benzyl alcohol slowly to benzaldehyde.²¹⁸

The Oppenauer reaction has been applied in the conversion of aliphatic and aromatic alcohols.²⁶⁹ The alcohol, a high-boiling aldehyde (such as cinnamaldehyde), and aluminum alkoxide catalyst are heated, and the volatile aldehyde is removed as it is formed.

Ch. 9

$RCH_{2}OH + R'CHO \xrightarrow[alkoxIde]{Aluminum} RCHO + R'CH_{2}OH$

In this manner, benzaldehyde and *n*-butyraldehyde have been obtained in 95% and 72% yields, respectively.¹⁵ This procedure is employed more extensively in the preparation of ketones (method 180).

159. Dehydrogenation of Primary Alcohols

$$\text{RCH}_2\text{OH} \xrightarrow{\text{Catalyst}} \text{RCHO} + \text{H}_2$$

Catalytic dehydrogenation of primary alcohols in the vapor phase has been studied in detail.²²⁶ Formerly, a copper catalyst³² was used; however, it has been found that this catalyst is easily poisoned.³⁹ A copper chromite catalyst at 300-345° and atmospheric pressure gives improved and consistent yields (50-70%) and retains its activity over long periods.^{33, 34, 38} Side reactions, such as dehydration, condensation, and ester formation, do not occur appreciably under these conditions.³⁸ Preparation of the catalyst and the apparatus have been described.^{34-36, 38}

Catalytic dehydrogenation of alcohols has been conducted with yields as high as 90% by passing the vapor mixed with air over silver or coppersilver catalysts.^{41, 195, 226} A three-step synthesis of DL-glyceraldehyde from glycerol consists in protecting two of the hydroxyl groups by ketal formation with acetone, followed by air oxidation over a silver catalyst and then hydrolysis of the ketal (59% over-all yield).²²¹ Methacrolein, $H_4C=C(CH_3)CHO$, is made by the air oxidation of methallyl alcohol (95%).²²⁷ A laboratory-scale model for the air oxidation of tetrahydrofurfuryl alcohol over a silver gauze catalyst has been described.²²⁸

Liquid-phase dehydrogenation is carried out under a pressure of ethylene, which serves as a hydrogen acceptor. 40

Ethoxyacetaldehyde, an *aldehyde ether*, is readily prepared in 35% yield from Cellosolve by the vapor-phase dehydrogenation technique.³⁶

Similar techniques are employed for the catalytic dehydrogenation of secondary alcohols (method 181).

160. Oxidative Cleavage of Glycols

RCHOHCHOHR'
$$\xrightarrow{\text{HIO}_4 \text{ or}} \text{RCHO} + \text{R'CHO}$$

Certain β -amino alcohols and glycols and their dehydroderivatives, i.e., α -ketols, α -ketals, and diketones, are readily oxidized with periodic acid or lead tetraacetate to aldehydes. A review of the method has been made.¹⁴⁴ The reactions are usually carried out at a moderate temperature, using water as the solvent for periodic acid and organic solvents for lead tetraacetate; however, both reagents can be used in aqueous solvents. Addition of the oxidizing reagent to the glycol instead of the reverse gives an improved yield.¹⁶⁹ The yields are high, and the method has found extensive application in both analytical and preparative procedures. It has been applied in the preparation of aldehydes containing a double bond or hydroxyl, carboxyl, ester, or ether groups.^{147, 148, 169} Oxidation of 1,2cyclohexanediols with lead tetraacetate leads to substituted adipic aldehydes in 68% yields.²⁴⁹

Several small-scale synthetic routes for obtaining intermediates for cleavage to aldehydes by lead tetraacetate have been proposed.^{145, 146}

(a)
$$\operatorname{RMgX} \xrightarrow{\operatorname{CH_2} = \operatorname{CHCH_2Br}}_{80\%} \operatorname{RCH_2CH} = \operatorname{CH_2} \xrightarrow{\operatorname{Br_2;}}_{KOAc} \operatorname{RCH_2CHOHCH_2OH} \xrightarrow{(O)}_{60\%}$$

RCH_2CHO

(b)
$$\operatorname{RCOCl} \xrightarrow{\operatorname{CH}_2 N_2} \operatorname{RCOCHN}_2 \xrightarrow{\operatorname{HOAc}} \operatorname{RCOCH}_2 \operatorname{OAc} \xrightarrow{\operatorname{H}^+}_{80\%}$$

RCOCH_2OAC $\xrightarrow{\operatorname{H}^+}_{80\%}$

161. Selective Reduction of Olefinic Aldehydes

$$RCH \Rightarrow CHCHO \xrightarrow{H_2} RCH_2CH_2CHO$$

Aldehydes may be prepared by selective hydrogenation of substituted acroleins in much the same manner as the selective reduction of unsaturated ketones (method 196); however, there are few examples adequately described.^{93-95, 100, 236}

162. Reduction of Acyl Chlorides (Rosenmund)

$$\begin{array}{c} \text{RCOCl} \xrightarrow[Catalyst]{H_2} \\ \hline \\ \text{Catalyst} \end{array} \\ \begin{array}{c} \text{RCHO} + \text{HCl} \\ \end{array}$$

Selective catalytic hydrogenation of an acyl chloride to an aldehyde can be accomplished with varying yields; the method has been reviewed.⁵⁸ The preferred catalyst is palladium suspended on barium sulfate. The reaction may be carried out in the liquid phase by bubbling hydrogen through a hot solution of the acyl chloride in xylene or tetralin in which Ch. 9

the catalyst is suspended, or in the vapor phase by passing the acyl chloride over palladinized asbestos at about 200° .⁶⁴ In the former procedure, the reduction has been arrested at the aldehyde stage by careful control of the temperature ⁶² (lowest point at which hydrogen chloride is evolved) or by use of a catalyst "regulator" which inactivates the catalyst for reduction of the aldehyde. Typical reductions with and without catalyst poisons are found in the preparation of β -naphthaldehyde (81%)⁵⁶ and 2,4,6-trimethylbenzaldehyde (80%),⁵⁷ respectively. The reaction is applicable to acyl chlorides carrying halogen, nitro, or ester groups,^{65, 67, 233} and even a double bond although this may migrate during the reaction.⁶⁶ Hydroxyl groups should be protected by acetylation.

Phosphorus- or sulfur-containing compounds formed in the preparation of the acyl chlorides hinder the reaction and therefore must be removed.²²³

163. Reduction of Thiol Esters

$$\operatorname{RCOSR}' \xrightarrow[Ni]{(H)} \operatorname{RCHO} + \operatorname{H}_2 S + \operatorname{R'H}$$

The reduction of a carboxyl group to an aldehyde group can be effected by a reductive desulfurization of the thiol ester with Raney nickel. The thiol esters are prepared by the reaction of the acyl chloride with an excess of ethyl mercaptan in pyridine or by reaction with lead mercaptide in dry ether. The hydrogenolysis is then carried out by refluxing an ethanolic solution of the thiol ester with Raney nickel for 6 hours. By this new synthesis, propionaldehyde and benzaldehyde have been prepared in 73% and 62% yields, respectively.¹⁶⁰

164. Reduction of Nitriles (Stephen)

$$\operatorname{RCN} \xrightarrow{\operatorname{HC1}} \operatorname{RC}(\operatorname{Cl}) = \operatorname{NH} \cdot \operatorname{HCl} \xrightarrow{\operatorname{SnCl}_2} (\operatorname{RCH} = \operatorname{NH})_2 \operatorname{SnCl}_4 \xrightarrow{\operatorname{H}_2 O} \operatorname{RCHO}$$

Nitriles may be converted to their imino chloride salts by the action of dry hydrogen chloride in ether. These intermediates are reduced by anhydrous stannous chloride to stannic aldimonium chlorides, which on hydrolysis yield aldehydes. Chloroform may be added to facilitate the solution of the nitrile. The quality of the stannous chloride catalyst is important; the preparation of an active and dependable form has been described.⁴⁹ The yields are usually high for many aromatic nitriles, as in the preparation of β -naphthaldehyde (95%).⁴⁹ The reaction has also been employed in the heterocyclic series, as in the synthesis of 4-methyl-thiazole-5-aldehyde (40%).⁵¹ The reduction of the cyano group in the presence of an ester group leads to an aldehyde ester, e.g., methyl cyanobenzoate to methyl *p*-formylbenzoate (90%).⁵³

However, it has been shown that the method may not be as general as originally supposed, especially in the preparation of the aliphatic aldehydes.^{50, 52, 55} Also, groups ortho to the nitrile group hinder the reaction.

Instead of reducing the imino chloride with stannous chloride, as indicated above, sodium amalgam may be used in the presence of phenylhydrazine. The resulting phenylhydrazone is then hydrolyzed.⁵⁴

165. Interaction of Grignard Reagents and Orthoformic Esters

 $RMgX + HC(OC_2H_5)_3 \rightarrow RCH(OC_2H_5)_2 \xrightarrow{H^+} RCHO$

The reaction of ethyl orthoformate and Grignard reagents gives acetals which are hydrolyzed readily by dilute acid to aldehydes. This method has been employed extensively for the preparation of aliphatic and aromatic aldehydes. A study of the optimum conditions has been made, using the conversion of bromobenzene to benzaldehyde as a model synthesis (90%).^{17, 21} Comparative studies of various aldehyde syntheses that employ Grignard reagents (methods 154, 166, and 167) show that this one is the most practical;^{16, 17} however, the possibility of a sudden exothermic reaction limits the size of the run. Longer reaction times at room or reflux temperature help overcome this difficulty.^{16, 18} Examples of the better preparative procedures are found in those for *n*-hexaldehyde (50%),¹⁸ *p*-tolualdehyde (79%),¹⁷ and phenanthrene-9-aldehyde (42%).²²⁴

N,N-Dialkylformamide^{16,19} or ethyl formate²⁰ and Grignard reagents have been used with some success; however, the former reaction is complicated and frequently produces tertiary amines as the chief product, and the latter forms secondary alcohols by further reaction of the aldehyde. Substituted benzaldehydes have been prepared from aryllithium compounds and N-methylformanilide in good yields.¹²²

166. Interaction of Grignard Reagents and Ethoxymethyleneaniline

 $ArMgX + C_6H_5N = CHOC_2H_5 \rightarrow ArCH = NC_6H_5 \xrightarrow{H^+} ArCHO$

Aromatic Grignard reagents react smoothly with ethoxymethyleneaniline to give imines which are easily hydrolyzed to aldehydes. The reaction is easy to cary out, is adaptable to large-scale preparations, and gives high yields (65-82%).¹⁷ Its use is limited by the availability of the ethoxymethyleneaniline, which may be prepared in a pure condition from the dry silver salt of formanilide and ethyl iodide. Ch. 9

167. Decomposition of Glycol Monoalkyl Ethers

A large number of symmetrical diaryl- or dialkyl-acetaldehydes, difficult to obtain by other means, have been prepared by the reaction of ethyl ethoxyacetate, or ethyl phenoxyacetate, with Grignard reagents followed by treatment of the resulting glycol monoalkyl ether with anhydrous oxalic acid or dilute sulfuric acid.²⁹ The yield in the first step is 40-80%, and the yield in the subsequent transformation is 50-80%.

Unsymmetrical dialkylacetaldehydes may be obtained by starting with an α -keto ether.³⁰

 $RMgX + R'COCH_2OC_2H_5 \rightarrow RR'C(OH)CH_2OC_2H_5 \rightarrow RR'CHCHO$

By this procedure, 2-(α -naphthyl)-propionaldehyde has been obtained in a 74% yield.³¹

The method has been further studied in its application for the synthesis of ketones (method 202).

168. Thermal Decomposition of Acids

 $\text{RCOOH} + \text{HCOOH} \xrightarrow{\text{ThO}_2} \text{RCHO} + \text{CO}_2 + \text{H}_2\text{O}$

The old method of heating the calcium salts of formic and a second carboxylic acid for aldehyde formation has been modified by the use of a catalytic decomposition technique. By this scheme, the acid vapors are passed over thorium oxide, titanium oxide, or magnesium oxide at 300° ;²¹³ or the acids are heated under pressure at 260° in the presence of titanium dioxide.²¹⁴ In the latter procedure, non-volatile acids can be used. With aliphatic acids over titanium oxide, reaction occurs only when more than seven carbon atoms are present, the yields increasing with increase in the molecular weight (78–90%). Aromatic acids having halo and phenolic groups are converted in high yields to aldehydes, e.g., salicylaldehyde (92%) and *p*-chlorobenzaldehyde (89%). Preparation of a thorium oxide catalyst has been described ²⁶⁸ (cf. method 186).

169. Decomposition of a-Hydroxy Acids

$$RCHOHCO_2H \xrightarrow{Heat} RCHO + CO + H_2C$$

High-molecular-weight aliphatic aldehydes have been made by the distillation of α -hydroxy acids, which are prepared by the hydrolysis of the corresponding α -bromo acids. The reaction is carried out under diminished pressure or in an atmosphere of carbon dioxide. Details for the procedure are found in the preparation of octanal (57%)⁴³ and undecanal (96%).⁴⁴ Preparation of the α -bromo acid and its subsequent hydrolysis are also described. A later modification has been the distillation of the α -methoxy acid in the preparation of heptadecanal.⁴⁵

Aldehydes have also been prepared from α -hydroxy acids by oxidation with lead tetraacetate in glacial acetic acid, e.g., tridecanal (55%) and pentadecanal (58%)⁴⁶ (cf. method 160).

170. Decarboxylation of a-Keto Acids

$$\operatorname{RCOCOOH} \xrightarrow{\operatorname{C_6H_5NH_2}}_{\operatorname{Heat}} \operatorname{RCH} \cong \operatorname{NC_6H_5} \xrightarrow{\operatorname{H_2O}} \operatorname{RCHC}$$

 α -Keto acids are readily decomposed to aldehydes and carbon dioxide. The decarboxylation may be brought about by heating the α -keto acid or its arylimino derivative. By the latter procedure, a solution of the keto acid in aniline is boiled, which causes the formation of water, carbon dioxide, and a Schiff base, RCH=NC₆H₅; hydrolysis of this product gives the aldehyde.¹⁶⁴ Oftentimes, decarboxylation is accomplished in higher yields by heating the glyoxylic acid in N,N-dimethyl-p-toluidine at $170^{\circ 170}$ or in diphenylamine at 150-200°.²⁵⁶

Another modification is the decomposition of the bisulfite-addition compound of the keto acid as illustrated by the synthesis of phthalaldehydic acid (41%).¹⁶⁶

171. Decarboxylation of Glycidic Acids

$$\begin{array}{c} \mathsf{RR'C} - \mathsf{CCO_2H} \xrightarrow{\mathsf{HCI}} \mathsf{RR'CHCHO} \\ & & \\ & \\ & & \\$$

Aromatic and aliphatic a dehydes have been prepared in good yields by the decarboxylation and isomerization of the corresponding glycidic acids. Esters of the latter are obtained by treating a ketone with ethyl chloroacetate in the presence of sodium amide (method 127). The glycidic esters are first converted to the sodium salts with sodium ethoxide and then treated with aqueous hydrochloric acid under gentle reflux. By this procedure, α -phenylpropionaldehyde has been prepared from acetophenone in an over-all yield of 38%.¹⁵⁷ Other details have been discussed.¹⁶¹ A similar route is the formation and isomerization of substituted ethylene oxides.¹⁵⁹ This synthesis has been carried out without isolating the intermediates.³⁰

$$RCOCH_2CI \xrightarrow{R'MgX} RR'COHCH_2CI \xrightarrow{KOH} RR'C-CH_2 \xrightarrow{HCI} RR'CHCHO$$

172. Hydrolysis of Olefin Dibromides¹¹³

$$(CH_3)_3COH \xrightarrow{Br_2} (CH_3)_2CBrCH_2Br \xrightarrow{H_2O} (CH_3)_2CHCHO$$

Over-all yield 75%

173. Degradation of Acid Amides and Azides

(a) α -Bromo Azides¹¹² (cf. method 220).

$$\text{RCHBrCON}_3 \xrightarrow{\text{Heat}} \text{RCHBrNCO} \xrightarrow{\text{H}_2\text{O}} (\text{RCHBrNH}_2) \xrightarrow{\text{H}_2\text{O}} \text{RCHO}$$

(b) Monosubstituted Malonyl Azides.²⁴⁰

$$\operatorname{RCH}_2\operatorname{CH}(\operatorname{CON}_3)_2 \xrightarrow{\operatorname{C_2H}_3\operatorname{OH}} \operatorname{RCH}_2\operatorname{CH}(\operatorname{NHCO}_2\operatorname{C_2H}_3)_2 \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{RCH}_2\operatorname{CHO}$$

(c) α , β -Olefinic Amides.¹⁶⁸

$$\operatorname{RCH} = \operatorname{CHCONH}_2 \xrightarrow[\operatorname{CH_3OH}]{\operatorname{NaOCl}} \operatorname{RCH} = \operatorname{CHNHCO_2CH}_3 \xrightarrow[\operatorname{H_2O}]{\operatorname{RCH_2CHO}} \operatorname{RCH_2CHO}$$

174. Acid Treatment of Primary Acinitroparaffins 194

$$\begin{array}{c} \text{RCH}_2\text{NO}_2 \xrightarrow{\text{NaOH}} \text{RCH} \Longrightarrow \text{NONa} \xrightarrow{\text{H+}} \text{RCHO} \\ \downarrow \\ 0 \end{array} \xrightarrow{\text{O}} \end{array}$$

R = methyl, ethyl, isopropyl, and *n*-butyl.

175. Isomerization of Unsaturated Alcohols 195

$$H_2C = C - CH_2OH \xrightarrow{H_2SO_4}_{96\%} (CH_3)_2CHCHO$$

$$\downarrow CH_3$$

176. Condensation of Aromatic Hydrocarbons with Chloral 120, 197

$$ArCH_3 + Cl_3CCHO \xrightarrow{OH^-} ArCH_2CHOHCCl_3 \xrightarrow{(O)} ArCH_2CHO$$

177. Formylation of Acetylenes^{211, 225}

(a)
$$C_6H_8C \equiv CNa + HCO_2R \xrightarrow{18\%} C_6H_8C \equiv C - CHO$$

(b) $CH_3(CH_2)_3C \equiv CNa + HCO_2R \xrightarrow{20^\circ} CH_3(CH_2)_3C \equiv C - CHO$

297

ALDEHYDES

Ch. 9

TABLE 25. ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Ali	iphatic and	Alicyc	lic Aldehydes	3
C,	Formaldehyde	159	35	9142	-21/760, 169Se, 166Dn *
C,	Acetaldehyde	158	72	9 ³	162Se •
		158	50	9142	147D n •
		••••	74	9207	20/760, 1.3353 ¹²⁺⁵ , 168Dn •
C,	Propionaldehyde	158	49	9 ¹	55, 1.364, 99Se*
		159	67	933	154Se *
		163	73	9160	154Dn
		165	[.]82	921	49
		174	80	91 94	
C₄	<i>n</i> -Butyraldehyde	158	72	9 ¹⁵	82/760, 1.3843 *, 104Se *
		159	62	933	77, 122Dn *
		165	76	921	75
		174	85	91 94	
	Isobutyraldehyde	158	64	9ª	63/741, 125Se •
		172	75 †	9113	65/740, 182Dn *
		175	96	9 ¹⁹⁵	64, 1.3730
C,	<i>n</i> -Valeraldehyde	158	50	9 6	102, 1.3947 *, 106Dn *
		159	72	937	
		159	58	9 ³³	
		165	50	9,25	
	Isovaleraldehyde	158	60	9²	95, 1.3902*, 107Se*
		159	61	933	123Dn *
		162	100	964	92
	Methylethylacetaldehyde	158	52	9 °	92, 1.3942 •, 120Dn •
		159	63	933	
		165	25 t	926	93, 103Se
		171	35	9 °	91/751
	Trimethylacetaldehyde	159	66	939	76, 191Se *
		165	35	920	74/730, 1.3791, 210Dn •
		170	40	9236	78
C6	n-Hexaldehyde (caproic	159	53	933	128 *, 106Se *
	aldehyde)	165	50	918	128/747, 1.4068 •, 104Dn •
	Methyl -n- propylacetalde - hyde	161	68	9100	116/737, 102Se •, 103Dn •
	Isobutylacetaldehyde	165	86	923	127Se, 99Dn
		168	86	9213	121/743
	Diethylacetaldehyde	159	55	933	
		167	60 t	929	118, 94Se
	Dimethylethylacetalde- hyde	159	66	939	104
	t-Butylacetaldehyde	151	60	9 ²⁴⁸	103, 1.4150, 147Dn
	Methylisopropylacetalde-	167	61	9 ³⁰	114, 1.3998 ²⁵ , 124Dn
	hyde		14 1	9 ³⁰	114

TABLE 25. ALDEHYDES

TABLE 25 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic	and Alicy	clic Alo	dehydes (<i>cont</i>	inued)
С, С,	Cyclopentylaldehyde n-Heptaldehyde (oe- nanthol) (from castor	161 	60 	934 9208	136/758, 34/10, 124Se 155/760, 1.4125*, 109Se* 108Dn*
	oil) 5-Methylhexanal	156	62	9114	144/750, 1.4114, 117Dn, 117Se
	3.3-Dimethylpentanal	151	80	9248	134, 1.4292, 102Dn
	Ethylpropylacetaldehyde	167	60 t	929	141
	Ethylisopropylacetalde- hyde	167	60	930	133.5, 1.4086 ²⁵ , 121Dn
	Cyclohexanealdehyde	161	86	9236	63/24, 1.4503 ¹⁸ , 172Dn
c.	<i>n</i> -Octaldehvde	164	100	950	65/11, 60-Ox, 98Se, 80pN
-0		168	90	9213	1.4217 •
		169	57	943	81/32, 59-Ox, 101Se
	Ethyl -n- butylacetalde- hyde	159	58	933	163 •, 254dSe •, 121Dn •
	Di-m-propylacetaldehyde	167	60 t	9 ²⁹	161, 1.4142 ¹⁵ , 101Se
	Ethylisobutylacetalde- hyde	167	60 †	9 29	155, 98Se
	Cyclohexylacetaldehyde	165	47	922	58/10, 1.4509 ²⁵ , 159Se, 125Dn
C.	Nonanal (pelargonic	159	90	942	78/3, 1.4273 •
-,	aldehyde)	160	33 t	9147	100/15, 64-Ox, 106Dn
		168	78	9214	
		168	85	9213	80/13, 64-Ox, 100Se
	Methyl -12- hexylacetalde- hyde	167	60 †	929	83/20, 80Se
	7-Methyloctanal	156	67	9114	103/140, 94/120, 100Dn, 80Se
	3,5-Dimethylhexahydro- benzaldehyde	171	65	9253	71/14, 171Se
C 10	Decanal	169	40	94	98/13, 102Se *
cĩ	Undecanal	169	96	9**	120/20, 1.4324 ²³ , 103Se [•] , 104Dn [•]
C 12	Dodecanal (lauric alde- hyde)	168	90	9214	238, (39.5), 78-Ox*, 106Dn*
C ₁₃	Tridecanal	169	55	9*	136/8, (15), 106Se, 108Dn
C 14	Tetradecanal (myristalde- hyde	164	100	9 5 0	155/10, (23), 83-Ox, 107Se, 95pN
		-169	35	947	166/24, (24), 106Se, 83-Ox
С 15	Pentadecanal	169	58	9**	160/14, (25), 109Se, 108Dn

300	1	AL	.DEHY	DES	Ch. 9
		TABLE	25 (m	mtinued)	
с <u></u>	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
<u> </u>	Aliphatic	and Alicy	clic Al	dehydes (con	tinued)
C 16	Hexadecanal (palmitalde- hyde	164 169	100 47	9 50 9 47	(34), 88-Ox, 107Se, 97pN 202/29, (34), 107Se, 88-Ox
C17	Heptadecanal (margaric	160	80	0146	(63)
	aldehyde)	169	52	947	204/26 (36) 108Se 90-0-
С 18	Octadecanal (stearalde- hyde	164	100	950	(38), 89– $0x$, 109Se, 101 pN
		Aron	natic Al	dehydes	
с,	Benzaldehyde	147	70	998	
		148	73	9261	64/13, 1.5446, 235Dn
		149	73	91 23	222Se •
		150	85	9111	88/40, 158Ph*
		151	70	9142	179
		155	44	9 ²¹⁵	
		158	95	915	
		162	96	964	
		163	62	9160	235Dn
		165	89	916	
		168	93	9214	
		••••	97	954	
C,	Phenylacetaldehyde	160	72	91 45	84/14, 97-Ox
		162	80	965	156Se *
		164	33	9 52	
		165	58	921	195, 99-0x
		171	50	9 ¹⁵⁸	95/22, 121Dn *
		173	75	9 ²⁴⁰	82/12, 58Ph *
	o-Tolualdehyde	147	70	9 ⁸⁹	88/19, 111Ph
		148	73	9262	72/6, 1.5430 ²⁵ , 193Dn*
		150	70	9128	93/19, 101Ph **
		155	65	9215	
		165	73	917	
		106	81	927	
	me foluardenyde	155	60	9213	84Ph •
	te Tolueldebyde	104	50	9200	198/756, 212Dn
	p rordardeny de	140	51	9.0	205
		140	70	0261	72/(1.5/20 22/0
		140	60	0127	12/0, 1.3420, 2345e
		155	80	9 215	170PM
		164	77	Q 52	106/10 200+N #
		165	74	017	100/ 10, 200pM **
		166	82	927	
С,	a-Phenylpropionalde- hyde	171	38 †	9157	93/10, 76/4, 135Dn

TABLE 25 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aromatic	Aldehyd	es (continued	ł)
C,	β -Phenylpropionalde-	162	62	9232	119/11
	hyde	165	67	9 ²⁴	100/13, 127Se
	2,6-Dimethylbenzalde- hyde	162	67	9 63	228/742, 158Se
	3,5-Dimethylbenzalde- hyde	155	48	9153	78/3.5, 1.5385, 201Se
Cuo	3-Phenyl-2-methylpropanal	171	55	9 ¹⁵⁹	90/6, 123Se
	<i>p-n</i> -Propylbenzaldehyde	170	65	9 ¹⁶⁷	114/13
	p-Isopropylbenzaldehyde	140	60	9 243	133/35, 1.5301*, 211Se*
	2,3,6-Trimethylbenzalde- hyde	165	61	917	114/10, 126-Ox, 169Se
	2,4,5-Trimethylbenzalde- hyde	165	72	9 ¹⁷	121/10, (44)*, 243Se*, 127Ph*
	2,4,6-Trimethylbenzalde-	140	83	9 ⁷⁸	128/15, 1.5524
	hy de	162	80	957	98/6
		162	80	9164	98/6
		165	57	917	188Se
		170	50	9164	98/6
	1,2,3,4-Tetrahydro-2- naphthaldehyde	162	67	9 ²³¹	92/0.5, 197Se
C 11	<i>p-s</i> -Butylbenzaldehyde	165	66	9 ¹²³	118/15, 1.524025
	2,3,5,6-Tetramethyl- benzaldehyde	165	61	917	135/11, (20), 270dSe, 125-Ox
	α-Naphthaldehyde	147	68	9 ⁸⁸	152/13, 98-Ox, 219Se
		147	82	9245	107/0.2, 162/18, (2.5)
		158	42	9 5	
	eta-Naphthaldehyde	147	50	9 %	150/15
		162	81	9 56	(60)
		164	95	9 49	(58), 154-Ox *
		165	70	9 ²⁷	(61), 245dSe
С 13	2,4,6-Triethylbenzalde- hyde	140	69	9 ⁷⁸	149/21
	<i>p</i> -Phenylbenzaldehyde	140	73	9243	(60), 189dPh *
	o-Phenylbenzaldehyde	149	55 t	9241	162/12
	2-(a-Naphthyl)-propion- aldehyde	167	74	931	132/2, 204Se
	l-Acenaphthaldehyde	162	72	9 %	(100.5)
C 14	Diphenylacetaldehyde	171	90	9 255	146/5, 114-0x
	9-Formylfluorene	••••	71	9199	172/2
C 15	α, β -Diphenylpropion- aldehyde	150	50	91289	170/11, (54), 125Se,
	9-Anthraldehyde	142	84	9 101	(105), 187-Ox*, 207Ph*
	l-Phenanthraldehyde	150	75	9134	(111.5), 189-Ox
	•	-	-	-	

302

Ch. 9

.

	£,,	TABLE	25 (co	mainued)	
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	1	romatic .	Aldehyd	les (continued)
Cıs	2-Phenanthraldehyde	150	85	9130	(59)*, 195-Ox*
		162	70	960	(59.5), 282Se *
	3-Phenanthraldehyde	150	85	9130	275Se *
		162	90	960	(80), 145-Ox •
	9-Phenanthraldehyde	150	90	9131	(101), 223Se
		162	90	9 ⁶⁰	(101)
		165	42†	9224	(101)
	1,2,3,4-Tetrahydrophe- nanthrene-9-aldehyde	150	68	9133	(129)
C 16	2,4,6-Triisopropylbenz- aldehyde	140	65	9 ⁷⁸	126/4
C 17	Pyrene-3-aldehyde	142	53	9 ¹⁰⁴	(126)
C 19	1,2-Benzanthracene-10- aldehyde	142	64	9102	(148)
C 21	3,4-Benzpyrene-5-aldehyde	142	90	9102	(203)
		Hetero	cyclic	Aldehydes	
C,	Furfural	560		396	90/65, 159/745
	3-Furaldehyde	162	62	961	68/39, 1.4945*, 211Se
	Tetrahydrofurfuraldehyde	159	60	9228	43/15, 1.4473, 134Dn
	2-Thiophenealdehyde	142	76	9 ²⁶⁰	92/25, 1.5888 ²⁵ , 139Ph
		147	53 t	984	91/21, 1.5880 ²⁵ , 242Dn
		158	65	9233	79/12, 1.588025
		165	70	9257	78/20, 1.595010
		170	45 1	9162	198, 119Ph
	3-Thenaldehyde	147	32 †	9**	199/744, 1.5860, 137Ph
	a-Pyrrole aldehyde	143	33	953	109/14, (50)
	4-Methylthiazole-5-	149	40	9124	118/21, (75), 159Ph
	aldehyde	164	65	951	(72.5), 161Ph
C6	5-Methylfurfural	7	22 †	39210	85/15
		560	22	39 ^s	85/15
	3-Methyl-2-thiophenealde- hyde	142	83	9260	114/25, 1.5833 ²⁵ , 149Ph
	5-Methyl-2-thiophenealde- hyde	142	81	9 260	114/25, 1.5782 ²⁹ , 126Ph
	Nicotinaldehyde	149	23	9125	99/26, 158Ph
c,	eta - Furyl propional dehyde	161	46	9 95	70/14, 1.4470, 80Se
c,	Thianaphthene-3-aldehyde	147	31	9 ²⁴⁷	(58)
		162	43	9235	(54)
	Indole-3-aldehyde	142	54	9 ¹⁰⁵	(195)
		143		982	198Ph *
		170	74	9163	(198)
	Coumarin-3-aldehyde	162	75	962	(132)

TABLE 27. OLEFINIC ALDEHYDES

TABLE 25 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Н	leterocyclic	Aldehy	des (continue	ed)
C ₁₀	Quinoline-2-aldehyde	176	50	9198	(69)
	Quinoline-4-aldehyde	157	61	9184	(84.5), 182-Ox
		176	36 †	9 ¹⁹⁷	123/4, (51), 179Pi
	lsoquinaldaldehyde	157	42	91 83	(55.5), 197Se
Cս	Dibenzofuran-2-aldehyde	140	81	977	(68), 162Ph

For explanations and symbols see pp. xi-xii.

TABLE 26. DIALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref,}	B.p./mm., n ^t _D , (M.p.), Deriv.
С,	Glyoxal	157	74	9 ¹⁷⁸	51*, 178-Ox*
Ċ,	Malonaldehyde	154	45 t	9 ²⁰⁶	(74)
C4	Succinaldehyd e	154	60	9 106	67/13, 172-Ox, 280Dn
C,	Glutaraldehyde	153	59	9263	75-81/15, 1.4330 ²⁵ , 169pN
C 6	Adipic dialdehyde	156	60	9115	94/12, 186-Ox •
-		160	68	9 249	70/3, 1.4350, 206Se *
C,	Phthaldehyde	151	58	91 39	(55.5), 191Ph *
•	lsophthaldehyde	155	31 t	9 ¹⁵¹	(89), 242Ph*, 180-Ox*
	Terephthalaldehyde	147	34	9244	(114), 278dPh*
		151	84	9140	(116), 200-Ox *
		152	70 †	91 89	(118)
		158	80	914	(116)

For explanations and symbols see pp. xi-xii.

TABLE 27. OLEFINIC ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphati	ic and Ali	icyclic (Olefinic Alder	aydes
С,	Acrolein		48	9 ¹⁹¹	55.5, 171Se*
			85	9 192	54, 1.4025, 165Dn *
C₄	Methacrolein (2-Methyl-2-	159	95	9 ²²⁷	73.5/760, 1.4191*, 198Se*
	propenal)	159	90	9 ¹⁹⁵	206Dn *
C,	2-Pentenal	158	50	910	125, 1.4350 ²¹ , 180Se
		154	70	9 6	125, 123pN *
	2-Methyl-2-butenal	36	30	2 ³¹⁵	116-119, 216Se
	eta -Methylcrotonaldehyde	19	40	2 439	130-135, 1.4526 *, 223Se

For explanations and symbols see pp. xi-xii.

.

30	4
~~~	-

Ch. 9

		TABL	.E 27 (c	ontinued)	
C _n	Compound	Method	Yield (%)	Chapter ^{r ef.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphatic and	Alicyclic	Olefini	c Aldehydes	(continued)
C.	2-Hexenal	158	50	910	150, 1.4470 ¹³ , 176Se, 139 ₂ N
	3-Hexenal	160	40	9146	150, 147Dn
	Hexadienal	36	50	2317	65/11, 160-Ox, 102Ph
	a-Isopropylacrolein	24	50	2167	109, 1.4223
		26	53	2167	107, 1.4223, 165Dn
	l-Cyclopentenylformalde- hyde		· 28 †	994	146/760, 48/11, 1.4828 ²¹
с,	2-Heptenal	158	75	9 <b>10</b>	85/14, 1.4314, 169Se, 116pN
	l-Cyclohexenealdehyde	20	77	2 451	70/13, 1.4921 ¹⁷ , 213Se, 99-Ox •
	2-Cyclopentenylac etalde- hyde	159	85	9229	50/15
C,	4-Octenal	158	35	9219	84/13, 1.4463 ²⁵ , 108Dn
-	Octatrienal	36	40	2317	(55)
	2-Ethyl-2-hexenal	36	58	2 ⁷³	73/30, 152Se, 125Dn
	2-Ethyl-3-hexenal		78	9 <b>1%</b>	84/52, 156Se
	3,6-Dihydro-o-tolualdehyde	34	31	2520	66/2, 1.5248 ²⁸ , 219Dn, 230Se
C,	2-Nonenal	158	50	910	126/21, 1.4426, 165Se, 113pN
		160	67	9147	58/0.1, 1.4502 ²⁵ , 165Se, 126Dn
CII	11-Undecenal	160	64	9 ¹⁴⁶	103/10, 91Dn
	Aromatic	and Het	erocycli	c Olefinic Al	dehydes
с,	$\beta$ -Furylacrolein	36	54	2313	95/9, (52)
с,	p-Formylstyrene (p-Vinyl- benzaldehyde	27	52	2 493	93/14, 1.5960 ²⁵ , 131Ph
С <u>10</u>	a-Methylcinnamaldehyde	36	67	2314	124/14, 208Se •
C ₁₁	5-Phenylpentadienal	36	20	2 ³¹⁸	161/12
	a-Ethylcinnamaldehyde	36	58	2313	112/7, 1.582225
С <u>15</u>	Stilbene-2-aldehyde	149	80	9 ¹²⁶	(83)
	a-Phenylcinnamaldehyde	36	25	2316	200/16, (95), 141Ph, 195Se
	$\beta$ -Phenylcinnamaldehyde	142	60	9202	210/14, 196Dn, 173Ph •

For explanations and symbols see pp. xi-xii.

### TABLE 29. HALO ALDEHYDES

#### TABLE 28. ACETYLENIC ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , Deriv.
с.	Proparavl aldehvde	158	46	9220	55
C,	2-Butynal	177	28 †	9225	105–110/755, 1.446 ¹⁹ 136Dn
с.	2-Heptynal	177	24	9 ²²⁵	54/13, 1.4521 ¹⁷ , 74Dn
с, С,	Phenylpropargyl aldehyde	43	70 t	333	116/17, 1.6032 ²⁵ , 108-Ox*
		154	81	9 ²³⁸	117/17, 1.603225

For explanations and symbols see pp. xi-xii.

#### TABLE 29. HALO ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n _D , (M.p.), Deriv.
	Alipha	tic and A	licyclic	Halo Aldehyd	les
C ₂	Trifluoroacetaldehyde		46	9222	-20, 151Dn
-	Tribromoacetaldehyde (bromal)	66	57	4513	74/18
C,	eta -Chloroptopionaldehyde	73	43	4 197	130, 50/10 *
	$\beta$ , $\beta$ , $\beta$ -Trifluoropropion- aldehyde	158	57	9222	56/745, 1.3168 ²² , 151Dn
C₄	a-Bromoisobutyraldehyde	66	18 †	4642	115, 1.451825
•		154	47	9 23 9	108-113
C,	a-Bromo-n-valeraldehyde	66	70	4 514	54/13
•	2, 3-Dibromo-2-methyl- butanal	74	70	4 430	73/3.5, 1.5228
C6	Bromoparacetaldehyde	66	32	4 516	(104)
	2-Methyl-2, 3-dichloro- pentanal	74	81	4438	67/13, 1.4586 ^{19,5}
c,	a-Bromoheptaldehyde	66	40 t	4 642	92/17, 1.4580-1.4600 ²⁵
•	1-Bromocyclohexanealde- hyde	66	80	4639	91/20, 1.500 ¹⁸
C,	9-Chlorononaldehyde	156	66	9117	100/3, 1.4501 ²⁵
		Aromatic	Halo A	ld ehyde s	
с,	o-Fluorobenzaldehyde	151	71	9137	91/45, 90Ph *, 63-Ox *
•	o-Chlorobenzaldehyde	149	61	9242	98/20, 209Dn *
		162	<b>70</b> ·	9 ⁶⁵	
	o-Iodobenzaldehyde	150	80	9132	129/14, 108-Ox*, 79Ph*
	<del>m-</del> Fluorobenzaldehyde	151	44	9137	93/45, 114Ph •
		162	60	9 ⁶⁷	173/760, 63-Ox
	<del>m-</del> Chlorobenzaldehyde	56	79	4329	86/8, 107/26, 135Ph*
	<i>m</i> -Bromobenzaldehyde	56	67	4329	92/4, 205Se*
	<i>p</i> -Fluorobenzaldehyde	151	49	9137	94/45, 147Ph *
	p-Chlorobenzaldehyde	149	77	9123	75/3, (47) •, 232Se •
		150	81	9133	(47), 220pN *

Ch. 9

TABLE 29	(continued)
----------	-------------

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n _D , (M.p.), Deriv.
	Aro	matic Ilal	o Aldehy	des (continue	rd)
с,	p-Chlorobenzaldehyde	151	60	9136	111/25, (47)
•	•	168	89	9214	
	p-Bromobenzaldehyde	148	75	9 ²⁶¹	(57), 229Se
		151	69	9135	(57)
		155	51†	91 <b>40</b>	(57)
		164	62	9230	(57), 257Dn
	<i>p</i> -lodobenzaldehyde	56	100	4 330	(77), 121Ph *
	,	164	56	9230	(77), 257Dn
C	p-Trifluoromethylbenz- aldehyde	148	77	9261	67/13, 1.4630
C,	a-Bromobenzylacetalde- hyde hydrate	66	90	4 51 5	(82)
CII	1-Bromo-2-naphthalde- hyde	147	40	9 ⁸⁷	(118)

For explanations and symbols see pp. xi-xii.

TABLE 30. HYDROXY ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv
	1	Aliphatic	Hydroxy	Aldehydes	
с,	Glycolaldehyde	156	25	9118	(76), 162Ph •
•			25	9 ²⁰⁵	(87)
			96	9212	
C,	a-Hydroxypropionalde- hyde	96	35	5 <b>557</b>	114/9, 127pN
	di-Glyceraldehyde	154	80	9237	139
		159	59 t	9221	(133)
	Hydroxypyruvic aldehyde	158	87	912	(160), 135-Ox
C,	4-Hydroxybutanal	160	42	9 ²⁵⁰	60/8, 1.4403, 118Dn
C,	5-Hydroxypentanal	99	79	5 625	55/3, 1.4514 ²⁵
-	Methylethylglycolic aldehyde	154	50	9 ¹⁷⁵	
	3-Methyl-3-hydroxy- butanal	156	75	9 ¹¹⁹	67/13, 142pN
	a,a-Dimethyl-/3-hydroxy- propionaldehyde	102	80	5 <b>200</b>	85/15, (97)
C6	2-Methyl-3-hydroxy- pentanal	102	86	5 206	86/12, 1.4373
	2-Isopropyl-3-hydroxy- propionaldehyde	102 -	52	5 201	84/10, 1.4603, 126Dn

#### TABLE 31. ALDO ETHERS

#### TABLE 30 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphat	ic Hydrox	y Aldeh	ydes ( <i>continu</i>	ed)
с,	Methyl-n-butylglycolic	89	15 †	5396	87/35, 143Se
	aldehyde	154	50	9 ¹⁷⁵	88/35, 143Se
C ₈	2,2,4-Trimethyl-3- hydroxypentanal	102	••••	5202	110/13, 1.4443
C,	9-Hydroxynonanal	160	23 †	9147	120/0.1, (54)
		Aromatic	Hydroxy	Aldehydes	
с,	Salicylaldehyde	143	50	9 ¹⁰⁹	196, 59-Ox *
		144	20	9 <b>%</b>	197, 142Ph
		149	55	9123	230Se *
		151	50	9141	248Dn *
		168	92	9214	
	<i>m</i> -Hydroxybenzaldehyde	93	56	5489	(104), 88-Ox, 130Ph*
	Resorcyl aldehyde	141	95	971	(136)
	3,4-Dihydroxybenzalde-	154	61 †	9264	(154d), 230dSe *
	hyde	97	61	5714	(154), 157d-Ox *
c,	Benzylglycolic aldehyde	96	50	5 555	121/4, (52), 70Bz, 137Se
_	Methylphenylglycolic	89	19†	5398	101/4, 182Se
	aldehyde	154	36	9175	101/4, 183Se
	2-Ethyl-4-hydroxybenz- aldehyde	141	21	976	145/1, (53)
С.,	Ethylphenylglycolic	89	11 †	5396	110/5, 188Se
- 10	aldehyde	154	28	9175	111/5, 188Se
Сu	1-Naphthol-2-aldehyde	141	72	971	(178)
	2-Naphthol-1-aldehyde	141	85	971	(81)
		142	45	9106	161/11, (84)
		143	48	9 ⁸⁰	(80)
		144	20	9 <b>%</b>	(82), 157-Ox
C 14	Diphenylglycolic alde-	89	25 †	5 398	(163), 124-Ox
	hyde	154	65	9 ¹⁷⁵	(163), 242Se

For explanations and symbols see pp. xi-xii.

#### TABLE 31. ALDO ETHERS

Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphat	ic Aldo	Ethers	
Methoxyacetaldehyde	158	17	911	92, 125Dn
	160	51	9148	89, 124Dn
	Compound Methoxyacetaldehyde	Compound Method Aliphat Methoxyacetaldehyde 158 160	Compound Method Yield (%) Aliphatic Aldo Methoxyacetaldehyde 158 17 160 51	CompoundMethodYield (%)Chapter ^{ref.} Aliphatic Aldo EthersMethoxyacetaldehyde15817911160519146

Ch. 9

	TABLE 31 (continued)							
C _n	Compound	Method	Yield (%)	Chapter ^r ef.	B.p./mm., n ^t _D , (M.p.), Deriv			
	Alip	hatic Aldo	Ethers	(continued)				
C₄	$\gamma$ - Methoxypropionalde- hyde	121	63	6 ¹⁴⁹				
	Ethoxyacetaldehyde	158	10	911	106, 117Dn			
		159	35	986	106/760*, 1.3956*			
		160	40	9148	91, 116Dn			
C5	$\beta$ -Methoxyisobutyralde- hyde	121	51	61 <b>*</b>	129, 1.4030 ²⁷ , 102Dn			
	<i>n</i> -Propoxyacetaldehyde	160	28	91 <b>48</b>	68/100, 119/748, 86Dn			
C.	5-Methoxyvaleraldehyde	156	78	9121	59/14.5			
•	a-Methyl-7-methoxy-	171	59	9254	66/55, 1.4280 ²⁵ , 88Dn			
	butyraldehyde							
C,	2-Methyl-2,3-dimethoxy- pentanal	115	85	6 ⁵⁰	67/12, 1.4196 ¹⁹			
		Aromatic	c Aldo I	Ethers				
С,	Phenoxyacetaldehyde	154	60	9111	105/10, 95-Ox*			
•		160	45	9148	94/6, 146Se, 138Dn			
		160	60	9 ¹⁶⁹	83/5, 1.5360			
	o-Methoxybenzaldehyde	116	92	6 ⁹¹	(37), 205pN *			
	m-Methoxybenzaldehyde	116	72 †	6 ⁹⁰	90/3, 171pN *			
	<b>p-</b> Methoxybenzaldehyde	141	100	972	248, 203Se*			
		149	77	9128	161pN *			
C,	o-Ethorybenzaldehyde	116	90	6 ⁹³	125/15, 59-Ox, 219Se*			
•	3,4-Dimethoxybenzalde-	116	87	694	153/8, (46), 90-Ox			
	hyde (veratraldehyde)							
C 10	2-Ethyl-4-methoxybenz- aldehyde	141	53	976	134/12, 1.5543 ²⁸			
	3-Ethoxy-4-methoxy- benzaldehyde	116	93	6161	155/10			
	3-Methoxy-4-ethoxybenz- aldehyde	116	79	6161	(64)			
	3,4,5-Trimethoxybenz- aldehyde	162	64	9148	(75)			
C11	3,4-Diethoxybenzalde- hyde	116	95	6 ⁹⁵	130/2			
C	o-Phenoxybenzaldehyde	115	22	6154	153/1, 215Se			
	2-Ethoxy-1-aaphthalde- hyde	142	84	9101	(112), 258Dn *			
C 14	m-Benzyloxybenzalde- hyde	115	97	6 <b>*</b> `	218/20, (54)			

For explanations and symbols see pp. xi-xii.

#### **REFERENCES FOR CHAPTER 9**

¹Hurd and Meinert, Org. Syntheses, Coll. Vol. 11, 541 (1943). ² Bouveault and Rousest, Bull. soc. chim. France, (3) 11, 300 (1894); Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 143. ³Wertheim, I. Am. Chem. Soc., 44, 2658 (1922). ⁴Smith et al., *I. Org. Chem.*, 4, 323 (1939). ⁵West, J. Am. Chem. Soc., 42, 1663 (1920). ⁶Kühn and Grundmann, Ber., 70, 1897 (1937). 'v. Braun, Ber., 56, 2272 (1923). [•] Fossek, Montash., 2, 614 (1881); 4, 660 (1883). ⁹ Neustädter, Monatsh., 27, 882 (1906). ¹⁰ Delaby and Guillot-Allegre, Bull. soc. chim. France, 53, 308 (1933); Martin, Schepartz, and Daubert, J. Am. Chem. Soc., 70, 2601 (1948). ¹¹ Hurd and Abernethy, J. Am. Chem. Soc., 63, 1966 (1941), ¹² Evans, Carr, and Krantz, J. Am. Chem. Soc., 60, 1628 (1938). ¹³ Ashley et al., *I. Chem. Soc.*, 115 (1942). ¹⁴ Helferich, Streech, and Günther, J. prakt. Chem., 151, 251 (1938). ¹⁵ Davies and Hodgson, I. Soc. Chem. Ind. (London), 62, 109 (1943); Lauchenauer and Schinz, Helv. Chim. Acta, 32, 1265 (1949). ¹⁶ Smith and Bayliss, I. Org. Chem., 6, 437 (1941). 17 Smith and Nichols, J. Org. Chem., 6, 489 (1941). ¹⁸ Bachman, Org. Syntheses, Coll. Vol. II, 323 (1943). ¹⁹ Maxim and Mavrodineanu, Bull. soc. chim. France, (5) 2, 591 (1935). ²⁰ Campbell, I. Am. Chem. Soc., 59, 1980 (1937). ²¹ Wood and Comley, I. Soc. Chem. Ind. (London), 42, 429T (1923). 22 Fried and Elderfield, J. Org. Chem., 6, 574 (1941); cf. ref. 21. ²³ Brunner and Farmer, J. Chem. Soc., 1044 (1937). ²⁴ Cohen, I. Chem. Soc., 432 (1935). 25 Letch and Linstead, J. Chem. Soc., 450 (1932); cf. ref. 21. ²⁶ Linstead and Mann, J. Chem. Soc., 2069 (1930). ²⁷ Sah, Rec. trav. chim., 59, 1024 (1940). ²⁸ Wuyts, Berman, and Lacourt, Bull. soc. chim. Belg., 40, 665 (1931). 29 Behal and Sommelet, Bull. soc. chim. France, (3) 31, 300 (1904); (4) 1, 401 (1907); Stoermer, Ber., 39, 2288 (1906). ³⁰ Barnes and Budde, I. Am. Chem. Soc., 68, 2339 (1946). ³¹ Fieser, Joshel, and Seligman, J. Am. Chem. Soc., 61, 2136 (1939). ³² Bouveault, Bull. soc. chim. France, (3) 11, 300 (1894); (4) 3, 119 (1908). ³³ Dunbar and Arnold, I. Org. Chem., 10, 501 (1945); Ind. Eng. Chem., Anal. Ed., 16, 441 (1944). ^{\$4} Dunbar, J. Org. Chem., 3, 242 (1938). ³⁵ Lazier and Arnold, Org. Syntheses, Coll. Vol. II, 142 (1943). ³⁶ Redemann and Icke, J. Org. Chem., 8, 160 (1943). ³⁷ Kraft and Herbst, I. Org. Chem., 10, 492 (1945); cf. ref. 36. 30 Adkins et al., I. Am. Chem. Soc., 55, 2992 (1933). 39 Conant, Webb, and Mendum, I. Am. Chem. Soc., 51, 1246 (1929). 40 Reeve and Adkins, I. Am. Chem. Soc., 62, 2874 (1940). ⁴ Davies and Hodgson, J. Chem. Soc., 282 (1943). ⁴² Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 145. ⁴⁰ Blaise, Bull. soc. chim. France, (3) 31, 483 (1904).

44 Davies and Hodgson, J. Soc. Chem. Ind. (London), 62, 128 (1943). 45 Darzens and Levy, Compt. rend., 196, 348 (1933). ⁴⁶ Laurer, Gensler, and Miller, J. Am. Chem. Soc., 63, 1153 (1941); cf. ref. 47. 47 Le Sueur, J. Chem. Soc., 87, 1888 (1905); 85, 827 (1904). 49 Pickard and Kenyon, J. Chem. Soc., 103, 1947 (1913). 49 Williams, Org. Syntheses, 23, 63 (1943). ³⁰ Stephen, J. Chem. Soc., 1874 (1925). ⁵¹ Harington and Moggridge, J. Chem. Soc., 445 (1939). ¹² Williams, J. Am. Chem. Soc., 61, 2248 (1939). 53 Slotta and Kethur, Ber., 71, 335 (1938). ⁵⁴ Henle, Ber., 35, 3039 (1902); 38, 1362 (1905). ³⁵Lieber, J. Am. Chem. Soc., 71, 2862 (1949). ⁵⁶ Hershberg and Cason. Org. Syntheses, 21, 84 (1941). ⁵⁷ Barnes, Org. Syntheses, 21, 110 (1941). ⁵⁸ Mosettig and Mozingo in Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, p. 362. ³⁹ Fieser and Hershberg, *I. Am. Chem. Soc.*, 62, 52 (1940); cf. ref. 58. ⁶⁰ Mosettig and van de Kamp, J. Am. Chem. Soc., 55, 2995 (1933); cf. ref. 58. ⁶¹ Hayes, J. Am. Chem. Soc., 71, 2581 (1949). ⁶² Boehm, Schumann, and Hansen, Arch. Pharm., 271, 490 (1933). 63 Lock and Schmidt, J. prakt. Chem., 140, 231 (1934). ⁶⁴ Weygand and Meusel, Ber., 76, 503 (1943); Fröschl and Danoff, J. prakt., Chem., (2) 144, 217 (1936); Rosenmund, Ber., 51, 585 (1918). 65 Rosenmund and Zetzsche, Ber., 54, 425 (1921). 66 English, Jr., and Velick, J. Am. Chem. Soc., 67, 1413 (1945). ⁶⁷ Shoesmith et al., J. Chem. Soc., 2760 (1926). ⁶⁵ Harris et al., J. Am. Chem. Soc., 67, 2098 (1945). ⁶⁹ Glattfeld and Straitiff, J. Am. Chem. Soc., 60, 1386 (1938). ⁷⁰ Coleman and Craig, Org. Syntheses, Coll. Vol. II, 583 (1943). ⁷¹ Adams and Levine, J. Am. Chem. Soc., 45, 2373 (1923). ⁷⁰ Adams and Montgomery, J. Am. Chem. Soc., 46, 1518 (1924). 73 Holloway and Krase, Ind. Eng. Chem., 25, 497 (1933). ⁷⁴ Hinkel, Ayling, and Morgan, I. Chem. Soc., 2793 (1932). 75 Arnold and Sprung, J. Am. Chem. Soc., 60, 1699 (1938). ⁷⁶ Baker, J. Am. Chem. Soc., 65, 1576 (1943). ⁷⁷ Hinkel, Ayling, and Beynon, J. Chem. Soc., 778 (1937). ⁷⁸ Fuson et al., J. Am. Chem. Soc., 64, 30 (1942); Org. Syntheses, 23, 57 (1943). "Niedzielski and Nord, J. Org. Chem., 8, 147 (1943). ⁸⁰ Russell and Lockhart, Org. Syntheses, 22, 63 (1942). ⁸¹ Hodgson and Jenkinson, J. Chem. Soc., 469 (1929). 82 Boyd and Robson, Biochem. 1., 29, 555 (1935). ⁴³ Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 403. ⁸⁴ Dunn, Waugh, and Dittmer, J. Am. Chem. Soc., 68, 2118 (1946); Wiberg, Org. Syntheses, 29, 87 (1949). ⁸⁵ Fuson and Cooke, Jr., J. Am. Chem. Soc., 62, 1180 (1940). ⁸⁶ Campaigne and LeSuer, J. Am. Chem. Soc., 70, 1557 (1948). ⁸⁷ Hewett, I. Chem. Soc., 297 (1940). ⁸⁸Coles and Dodds, J. Am. Chem. Soc., 60, 853 (1938); Mayer and Stieglitz, Ber., 55, 1846 (1922); Rupe and Brentano, Helv. Chim. Acta, 19, 586 (1936); Ruggli and Bruckhardt, *ibid.*, 23, 443 (1940).

⁸⁹ Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 156; Grammaticakis, Bull. soc. chim. France, (5) 7, 537 (1940). 90 Badger, I. Chem. Soc., 536 (1941). ⁹¹ Fisher, J. Am. Chem. Soc., 56, 2056 (1934). ⁹² Baker, Nathan, and Shoppee, j. Chem. Soc., 1848 (1935). 93 Palfray, Bull. soc. chim. France, (5) 7, 414 (1940). 94 Urion, Ann. chim., (11) 1, 43 (1934). 95 Burdick and Adkins, J. Am. Chem. Soc., 56, 438 (1934). 96 Duff, J. Chem. Soc., 547 (1941), 97 Graymore and Davies, J. Chem. Soc., 293 (1945). 98 Sommelet, Compt. rend., 157, 852 (1913). 99 Duff, J. Chem. Soc., 276 (1945). 100 Skita, Ber., 48, 1491 (1915). ¹⁰¹ Fieser, Hartwell, and Jones, Org. Syntheses, 20, 11 (1940). ¹⁰² Fieser and Hershberg, J. Am. Chem. Soc., 60, 2547, 2558 (1938). ¹⁰³ Vilsmeier and Haack, Ber., 60, 119 (1927). ¹⁰⁴ Vollmann et al., Ann., 531, 108 (1937). ¹⁰⁸ Shabica et al., J. Am. Chem. Soc., 68, 1156 (1946). 106 Ruggli and Burckhardt, Helv. Chim. Acta, 23, 447 (1940). 107 Tiemann, Ber., 33, 3721 (1900). ¹⁰⁸ Keagle and Hartung, J. Am. Chem. Soc., 68, 1609 (1946); Mannich and Budde, Arch. Pharm., 270, 283 (1932); and Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 161. ¹⁰⁹ Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 235. ¹¹⁰ Moses, Ber., 33, 2624 (1900). ¹¹¹ Dey, J. Chem. Soc., 1059 (1937); Rotbart, Ann. chim., (11) 1, 439 (1934). ¹¹² Newman, J. Am. Chem. Soc., 57, 732 (1935). ¹¹³ Whitmore et al., J. Am. Chem. Soc., 55, 1136 (1933). ¹¹⁴ Henne and Hill. J. Am. Chem. Soc., 65, 752 (1943); Henne and Perilstein, ibid., 65, 2183 (1943). ¹¹⁵ Fisher and Loewenberg, Ber., 66, 666 (1933); Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 384. ¹¹⁶ Noller and Adams, J. Am. Chem. Soc., 48, 1074 (1926). ¹¹⁷ Noller and Bannerot, J. Am. Chem. Soc., 56, 1563 (1934). ¹¹⁸ Fisher and Feldmann, Ber., 62, 856 (1929). ¹¹⁹ Fisher, Ber., 76, 734 (1943). ¹²⁰ Ferguson, Chem. Revs., 38, 227 (1946). ¹²¹ Pummerer and Schönamseruber, Ber., 72, 1840 (1939). 122 Adams and Lipscomb. J. Am. Chem. Soc., 71, 519 (1949). ¹²³ McFadyen and Stevens, J. Chem. Soc., 584 (1936). ¹²⁴ Buchman and Richardson. J. Am. Chem. Soc., 61, 892 (1939). ¹²⁸ Niemann, Lewis, and Hays, J. Am. Chem. Soc., 64, 1678 (1942); Panizzon, Helv. Chim. Acta, 24, 24E (1941). ¹²⁶ Natelson and Gottfried, J. Am. Chem. Soc., 63, 487 (1941); 64, 2962 (1942). ¹²⁷ Kalb and Gross, Ber., 59, 727 (1926). ¹²⁸ Williams, Witten, and Krynitsky, Org. Syntheses, 26, 97 (1946). ¹²⁹ Burton and Shoppee, J. Chem. Soc., 548 (1937). ¹³⁰ Bachmann and Kloetzel, J. Am. Chem. Soc., 59, 2209 (1937).

¹³¹ Shoppee. J. Chem. Soc., 40 (1933).

¹³² Rapson and Shuttleworth, J. Chem. Soc., 488 (1941). 133 Coleman and Pyle, J. Am. Chem. Soc., 68, 2007 (1946). 134 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2100 (1936). ¹³⁵ Coleman and Honeywell, Org. Syntheses, Coll. Vol. II, 89 (1943). ¹³⁶ McEwen, Org. Syntheses, Coll. Vol. II, 133 (1943). 137 Brooks, J. Am. Chem. Soc., 66, 1296 (1944); Marvel and Hein, ibid., 70, 1896 1948. ¹³⁸ Wiley and Smith, J. Am. Chem. Soc., 70, 1560 (1948). ¹³⁹ Wawzonek and Karll, J. Am. Chem. Soc., 70, 1666 (1948). 140 Snell and Weissberger, Org. Syntheses, 20, 92 (1940). 141 Copisarow, J. Chem. Soc., 588 (1929). 142 Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, Chapter V. 143 Huang, Tarbell, and Arnstein, J. Am. Chem. Soc., 70, 4182 (1948). 144 Jackson in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 341. 143 Hershberg, Helv. Chim. Acta, 17, 351 (1934). 146 Grundmann, Ann. chim., 524, 31 (1936). ¹⁴⁷ Scanlan and Swern. I. Am. Chem. Soc., 62, 2305. 2309 (1940). 148 Hatch and Nesbitt, J. Am. Chem. Soc., 67, 39 (1945). 149 Lieberman and Connor, Org. Syntheses, Coll. Vol. II, 441 (1943); Walton, Tipson, and Cretcher, J. Am. Chem. Soc., 67, 1501 (1945). ¹⁵⁰ Tsang, Wood, and Johnson, Org. Syntheses, 24, 75 (1944). ¹⁵¹ Johnston and Williams, J. Am. Chem. Soc., 69, 2065 (1947). ¹⁵² Marvel and Hein, I. Am. Chem. Soc., 70, 1897 (1948). ¹⁵³ Marvel, Saunders, and Overberger, J. Am. Chem. Soc., 68, 1085 (1946). ¹⁵⁴ Charlot, Ann. chim., (11) 2, 415 (1934). ¹³⁵ Marek and Hahn, Catalytic Oxidation of Organic Compounds in Vapor Phase, A.C.S. Monograph 61, Chemical Catalog Co., New York, 1932. ¹⁵⁶ Beard and Hodgson, J. Chem. Soc., 4 (1944). ¹⁵⁷ Allen and Van Allen, Org. Syntheses, 24, 82, 87 (1944); Newman and Closson, J. Am. Chem. Soc., 66, 1554 (1944). ¹⁵⁶ Scheibler and Tutundzitsch, Ber., 64, 2916 (1931); Ruggli and Hegedus, Helv. Chim. Acta, 25, 1291 (1942). 159 Ramart-Lucas and Labaune, Ann. chim., (10) 16, 282 (1931). ¹⁶⁰ Wolfrom and Karabinos, J. Am. Chem. Soc., 68, 1455 (1946). ¹⁶¹ Newman and Magerlein in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, pp. 413-440. ¹⁶² Barger and Easson, J. Chem. Soc., 2100 (1938); Biedermann, Ber., 19, 636 (1886). 163 Elks. Elliott, and Hems, J. Chem. Soc., 629 (1944). 164 Barnes, Pierce, and Cochrane, J. Am. Chem. Soc., 62, 1084 (1940). ¹⁶⁵ Fuson, I. Am. Chem. Soc., 48, 1093 (1926). 166 Gardner and Naylor, Jr., Org. Syntheses, Coll. Vol. II, 523 (1943). 167 Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 447. 168 Weerman, Ann., 401, 1 (1913); Rec. trav. chim., 29, 18 (1910); 37, 1 (1917); Rinkes, Rec. trav. chim., 39, 200, 704 (1920); 45, 819 (1926); 46, 268 (1927); 48, 960 (1929). 169 Speer and Mahler, J. Am. Chem. Soc., 71, 1133 (1949).

#### **REFERENCES FOR CHAPTER 9**

¹⁷¹ Levine et al., J. Am. Chem. Soc., 67, 1510 (1945). ¹⁷² Long, I. Am. Chem. Soc., 69, 992 (1947). ¹⁷³ Mariella, I. Am. Chem. Soc., 69, 2670 (1947); Tracy and Elderfield, I. Org. Chem., 6, 63 (1941). ¹⁷⁴ Petrow, I. Chem. Soc., 694 (1942); Plattner, Helv. Chim. Acta, 28, 773 (1945).¹⁷⁵ Freon, Ann. chim., (11) 11, 478 (1939). ¹⁷⁶ Rabiohn in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, pp. 331-386. 177 Riley and Gray, Org. Syntheses, Coll. Vol. II, 509 (1943). 178 Ronzio and Waugh, Org. Syntheses, 24, 61 (1944). ¹⁷⁹ Gray and Fuson, J. Am. Chem. Soc., 56, 739 (1934). 180 Fuson, Gray, and Gouza, J. Am. Chem. Soc., 61, 1938 (1939). 181 Hahn and Schales, Ber., 67, 1821 (1934). 182 Rubin, Paist, and Elderfield, J. Org. Chem., 6, 268 (1941). ¹⁸³ Barrows and Lindwall, I. Am. Chem. Soc., 64, 2430 (1942). 184 Kwartler and Lindwall, J. Am. Chem. Soc., 59, 524 (1937). ¹⁸⁵ Rappen, J. prakt. Chem., 157, 197 (1941). 186 Bennett and Bell, Org. Syntheses, Coll. Vol. II, 223 (1943). 187 Adams and Coleman, Org. Syntheses, Coll. Vol. I. 214 (1941). 188 Dippy et al., J. Soc. Chem. Ind. (London), 56, 346T (1937). ¹⁸⁹ Kröhnke and Börner, Ber., 69, 2006 (1936); Kröhnke, ibid., 71, 2583 (1938); Reich. Helv. Chim., Acta, 23, 219 (1940); Karrer and Epprecht, ibid., 24, 1039  $(1941)_{-}$ ¹⁹⁰ Adkins and Krsek, J. Am. Chem. Soc., 70, 383 (1948); 71, 3051 (1949). ¹⁹¹ Adkins and Hartung, Org. Syntheses, Coll. Vol. I, 15 (1941). ¹⁹² Bremner, Jones, and Beaumont, J. Chem. Soc., 1019 (1946). ¹⁹³ Shriner and Wolf, Org. Syntheses, 23, 74 (1943); Ullyot et al., J. Org. Chem., 10, 433 (1945). ¹⁹⁴ Johnson and Degering, J. Org. Chem., 8, 10 (1943). ¹⁹⁵ Hearne, Tamele, and Converse, Ind. Eng. Chem., 33, 805 (1941). ¹⁹⁶ Mannich and Kniss, Ber., 74, 1640 (1941). ¹⁹⁷ Clemo and Hoggarth, I. Chem. Soc., 1241 (1939); Pauly and Schanz, Ber., 56, 979 (1923). ¹⁹⁸ Cooper and Cohen, J. Chem. Soc., 723 (1932). ¹⁹⁹ Von and Wagner, J. Org. Chem., 9, 162 (1944); Brown and Bluestein, J. Am. Chem. Soc., 65, 1082 (1943). 200 Oroshnik and Spoerri, J. Am. Chem. Soc., 63, 3338 (1941). ²⁰¹ Peak, Robinson, and Walker, J. Chem. Soc., 752 (1936). ²⁰² Lorenz and Wizinger, Helv. Chim. Acta, 28, 600 (1945). ²⁰³ Blumenfeld, Ber., 74B, 527 (1941). ²⁰⁴ Jitkow and Bogert, J. Am. Chem. Soc., 63, 1981 (1941). ²⁰⁵ Bell and Hirst, J. Chem. Soc., 1777 (1939); cf. Fischer and Taube, Ber., 1707 (1927). 206 Hüttel, Ber., 74, 1827 (1941); Reitzenstein and Bönitsch, J. prakt. Chem., (2) 86, 36 (1912). ²⁰⁷ Dolliver et al., I. Am. Chem. Soc., 60, 440 (1938). ²⁰⁸ Johnson, J. Am. Chem. Soc., 61, 2486 (1939).

²⁰⁹ Schönberg, Moubasher, and Mostafa, J. Chem. Soc., 176 (1948); Baddar, *ibid.*, S163 (1949).

¹⁷⁰ Guyot and Gry, Bull. soc. chim. France, (4) 7, 911 (1910).

²¹⁰ Spense and Wild, J. Chem. Soc., 338 (1935); Walker, J. Am. Chem. Soc., 55, 2821 (1933). ²¹¹ Moureu and Delange, Compt. rend. 133, 105 (1901); Chem. Zentr., ii. 461 (1901). ²¹² Milas, Sussman, and Mason, J. Am. Chem. Soc., 61, 1844 (1939). ²¹³ Sabatier and Mailhe, Compt. rend., 154, 561 (1912); 158, 986 (1914). ²¹⁴ Davies and Hodgson, I. Chem. Soc., 84 (1943). ²¹⁵ Law and Perkin, J. Chem. Soc., 259 (1907). ²¹⁶ Segesser and Calvin, I. Am. Chem. Soc., 64, 825 (1942). ²¹⁷ Hanus, J. prakt. Chem., 158, 254 (1941). ²¹⁶ Astin, Newman, and Riley, J. Chem. Soc., 391 (1933); Fisher and Eisner. ibid., 6, 169 (1941); Weygand, Kinkel, and Tietjen, Chem. Ber., 83, 394 (1950). ²¹⁹ Jacobson, J. Am. Chem. Soc., 72, 1491 (1950). 220 Wille and Saffer. Ann., 568, 34 (1950). ²²¹ Gresham and Grigsby, J. Org. Chem., 14, 1103 (1949). ²²² Henne, Pelley, and Alm. J. Am. Chem. Soc., 72, 3370 (1950). 223 Emerson and Patrick, J. Org. Chem., 14, 790 (1949). ²²⁴ Dornfeld and Coleman, Org. Syntheses, 28, 83 (1948). ²²⁵ Lunt and Sondheimer, 1. Chem. Soc., 3361 (1950). ²²⁶ Marek and Hahn, Catalytic Oxidation of Organic Compounds in the Vapor Phase, Chemical Catalog Co., New York, 1932, pp. 37-99. 227 Church and Lynn, Ind. Eng. Chem., 42, 768 (1950). ²²⁸ Bremner et al., J. Chem. Soc., S25 (1950). 229 Moureu, Chovin. and Brunet. Bull. soc. chim. France. (5) 15, 96 (1948). ²³⁰ Bowen and Wilkinson, J. Chem. Soc., 750 (1950). ²³¹ Newman and Mangham, J. Am. Chem. Soc., 71, 3342 (1949). ²³² Kumler, Strait, and Alpen, J. Am. Chem. Soc., 72, 1463 (1950). 233 Eliel and Burgstahler, J. Am. Chem. Soc., 71, 2251 (1949). ²³⁴ Detweiler and Amstutz, I. Am. Chem. Soc., 72, 2882 (1950). ²³⁵ Elliot and Harington, J. Chem. Soc., 1377 (1949). 236 Heilbron et al., J. Chem. Soc., 737 (1949). ²³⁷ Witzemann et al., Org. Syntheses, Coll. Vol. II, 304 (1943). 236 Allen and Edens, Org. Syntheses, 25, 92 (1945). 239 Alexander, J. Am. Chem. Soc., 70, 2592 (1948). 240 Curtius, J. prakt. Chem., 94, 273 (1917); Smith in Organic Reactions, Vol. 3, John Wiley & Sons. New York. 1946. p. 384. 241 Cook et al., J. Chem. Soc., 142 (1950). ²⁴² McCoubrev and Mathieson, I. Chem. Soc., 701 (1949). ²⁴³ Crounse in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, pp. 290-300. 244 Angyal et al., J. Chem. Soc., 2700, 2704 (1949); 2141 (1950). 245 Angval. Tetaz. and Wilson. Org. Syntheses, 30, 67 (1950); cf. Gaylord and Becker, J. Org. Chem., 15. 312 (1950). 246 Wood et al., J. Am. Chem. Soc., 72, 2992 (1950). 247 King and Nord, J. Org. Chem., 13, 635 (1948). 248 Schmerling, J. Am. Chem. Soc., 68, 1653 (1946). 249 English and Barber, J. Am. Chem. Soc., 71, 3310 (1949). 230 Paul and Tchelitcheff, Bull. soc. chim. France, (5) 15, 200 (1948). ²⁵¹ Bergmann and Pinchas, J. Org. Chem., 15, 1184 (1950). 252 Horrom and Zaugg, J. Am. Chem. Soc., 72, 723 (1950). 253 Horning, Horning, and Platt, J. Am. Chem. Soc., 71, 1771 (1949).

254 Elderfield, Pitt, and Wempen, J. Am. Chem. Soc., 72, 1334 (1950). 235 Ecary, Ann. chim., (12) 3, 450 (1948). 256 Trister and Hibbert, Can. J. Research, 14B, 421 (1936). 257 Cagniant, Bull. soc. chim. France, (5) 16, 849 (1949). 258 Kipnis and Ornfelt, J. Am. Chem. Soc., 70, 3948 (1948). 259 Johnson and Shelberg, J. Am. Chem. Soc., 67, 1745 (1945). 260 Weston and Michaels, J. Am. Chem. Soc., 72, 1422 (1950) Org. Syntheses, 31, 108 (1951); cf. refs. 223 and 247. 261 Hass and Bender, J. Am. Chem. Soc., 71, 1767 (1949). 262 Hass and Bender, Org. Syntheses, 30, 99 (1950). 263 Ruzicka et al., Helv. Chim. Acta, 31, 433 (1948). ²⁶⁴ Buck and Zimmermann, Org. Syntheses, Coll. Vol. II, 549 (1943). 265 Longley and Emerson, J. Am. Chem. Soc., 72, 3079 (1950). 266 Bert, Compt. rend., 221, 77 (1945). 267 Davies and Hodgson, J. Soc. Chem. Ind. (London), 62, 90 (1943). 268 Herbst and Manske, Org. Syntheses, Coll. Vol. II, 389 (1943). 269 Dierassi in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 207.

METHOD 178

#### CONTENTS (continued)

#### 

## 

### Ketones

#### CONTENTS

METHOD	PAGE
178. Acylation of Hydrocarbons (Friedel-Crafts)	317
179. Oxidation of Secondary Alcohols	323
180. Oxidation of Alcohols by Ketones (Oppenauer)	324
181. Catalytic Dehydrogenation of Secondary Alcohols	325
182. Oxidation of Olefinic Compounds (Ozonolysis)	325
183. Oxidation of Methylene Groups	326
184. Cleavage of β-Keto Esters	327
185. Decarboxylation of Acylmalonic Acids	330
186. Thermal Decarboxylation of Acids	331
187. Interaction of Grignard Reagents and Nitriles	332
188. Interaction of Organometallic Reagents and Anhydrides	333
189. Interaction of Organometallic Reagents and Acyl Chlorides	333
190. Interaction of Grignard Reagents and Amides	335
191. Interaction of Grignard Reagents and $\alpha,\beta$ -Olefinic Ketones	335
192. Interaction of Grignard Reagents and Halo Ketones	335
193. Interaction of Organometallic Reagents and Esters	336
194. Interaction of Organometallic Reagents and Salts of Carboxylic Acids	336
195. Hydrolysis of Ketone Derivatives	336
196. Selective Reduction of $a, \beta$ -Olefinic Ketones	337
197. Partial Reduction of Phenols	338
198. Alkylation of Ketones	339
199. Interaction of Diazomethane and Carbonyl Compounds	340
200. Catalytic Hydration of Acetylenic Compounds	340
201. Dehydration and Rearrangement of a-Diols	341
202. Decomposition of Glycol Monoalkyl Ethers	341
203. $\beta$ -Diketones by Acylation of Ketones	342
204. a, &-Olefinic Ketones from Acetylenic Carbinols	343
205. $\gamma$ , $\delta$ -Olefinic Ketones from Alkenyl Esters of $\beta$ -Keto Acids	343
206. Cyclopentenones from Lactones	343
207. β-Halo Ketones from Acyl Chlorides and Olefins	343
208. a-Halo Ketones from Alkenyl Esters	344
209. Hydroxy Ketones from Phenolic Esters (Fries)	344
210. a-Keto Acids from Azlactones	344
211. $\beta$ -Keto Esters by Condensation of Esters	345
212. B-Keto Esters by Selective Cleavage of a, a-Diacyl Esters	346
213. $\beta$ -Keto Esters by Alkylation of $\beta$ -Keto Esters	346
214. B-Keto Esters from Ethyl t-Butyl Acylmalonic Esters	347
215. $\beta$ -Keto Esters by Acylation of Ester Enolates	347

METHOD	PAGE
216. <i>B</i> -Keto Nitriles by Acylation of Nitriles	. 348
217. Hydrogenolysis of 1, 3-Diketones	. 348
218. Acid Treatment of Acinitroparaffins	. 348
219. Pyrolysis of Glycidic Acids	. 348
220. Rearrangement of a-Bromo Azides	349
221. Degradation of Disubstituted Glycolic Acids	. 349
222. Hydrolysis of gem-Dihalides	. 349
223. Isomerization of Vinyl Carbinols	349
224. Condensation of Furans with Unsaturated Ketones	. 349
225. Condensation of Anhydrides	. 349
226. Acylation of Certain Heterocyclic Compounds	349
227. Addition of Aldehydes to Olefins	350
228. Interaction of Hydriodic Acid and Diazo Ketones	350
229. 8-Diketones from Substituted Furans	350
230. a-Diketones by Oxidation of Aryl Acetylenes	350
231. $\gamma$ -Diketones from Ketones	350
232. Olefinic Ketones from Hydrocarbons and Carbon Monoxide	350
233. a, $\beta$ -Olefinic Ketones from Diketene and Aldehydes	350
234. B-Keto Esters by the Reformatsky Reaction	. 351
235. Hydrolysis of $\beta$ -Iminonitriles	351
Table 32. Monoketones	352
Table 33. Diketones	363
Table 34. Olefinic Ketones	<b>3</b> 66
Table 35. Acetylenic Ketones	370
Table 36. Halo Ketones	370
Table 37. Hydroxy Ketones	375
Table 38. Keto Ethers	378
Table 39. Keto Aldehydes	381
References	383

178. Acylation of Hydrocarbons (Friedel-Crafts)

:2

ArH + RCOCI Catalyst ArCOR + HCl

Many organic compounds react with carboxylic acids, acyl halides, or anhydrides in the presence of certain metallic halides, metallic oxides, iodine, or inorganic acids to form carbonyl compounds. The reaction is generally applicable to aromatic hydrocarbons. Benzene, alkylbenzenes, biphenyl, fluorene, naphthalene, anthracene, acenaphthene, phenanthrene, higher aromatic ring systems, and many derivatives undergo the reaction. In addition, olefinic and heterocyclic compounds have been converted to ketonic compounds. Therefore, a large number of ketones have been prepared by this reaction. Excellent reviews are available.¹⁰

Benzene is usually acylated by the addition of anhydrous aluminum chloride to a benzene or carbon disulfide-benzene solution of the aliphatic or aromatic acyl halide, as in the preparation of phenyl benzyl ketone (83%),¹ benzophenone (90%),² and stearoylbenzene (65%).³

The mono- and poly-alkylated benzenes are treated using modifications of the above procedure. Monoalkylbenzenes are added to a preformed complex of acyl halides and aluminum chloride in carbon tetrachloride⁴ (Perrier modification). In this manner, the manipulation is easier, no tars are encountered, and the yields are improved (85-90%). The procedure shows no advantage, however, in the acylation of alkoxy- or chloro-aromatic compounds. The addition of benzoyl chloride to *p*-alkylbenzenes in the presence of aluminum chloride in cold carbon disulfide is a good procedure for making p-alkylbenzophenones (67-87%).⁵ The condensation of homologs of benzene with oxalyl chloride under similar conditions yields p, p'-dialkylbenzophenones (30-55%).²⁷ Polyalkylbenzenes have been acylated with acetic anhydride and aluminum chloride (2,1:1 molar ratio) in carbon disulfide in 54-80% yields.⁶⁷ Ferric chloride catalyst has been used under similar conditions.⁸ Acetylation of p-cymene with acetyl chloride and aluminum chloride in carbon disulfide yields 2-methyl-5-isopropylacetophenone (55%)."

Studies on the conditions of the reaction have been made using simple compounds as model substances. A comparison of thirty-nine metallic chlorides shows aluminum chloride to be the most effective in the preparation of *p*-methylacetophenone.¹¹ Optimum yields result when the molar ratios of aluminum chloride to anhydride, acyl chloride, and acid are 3.3, 1.0, and 2.5, respectively. Halogen and oxyhalogen carriers are not help-ful.¹² Inconsistent yields in the Friedel-Crafts reaction have been attributed to the presence of ferric chloride or moisture in the aluminum chloride catalyst.¹³ Prolonged heating causes condensation of the ketone product. It has been shown that cessation of hydrogen chloride evolution may not be a satisfactory criterion for judging completeness or optimum period of reaction.¹⁴ For the most part, the success of the reaction depends on the use of mild conditions and pure reagents.¹⁹⁻¹⁷

Other aromatic compounds have been acylated by varying procedures. A general procedure for the preparation of alkyl biphenyl ketones has been described whereby the acyl halide is added to a mixture of biphenyl, aluminum chloride, and carbon disulfide (62-90%).¹⁸ Nitrobenzene or carbon disulfide is used as the solvent in the preparation of 2-acetylfluorene (83%)^{19,31} and the isomeric 2- and 3-acylphenanthrenes.^{20,21} A convenient method for obtaining pure 2-acylphenanthrene is the acylation of 9,10-dihydrophenanthrene followed by sulfur dehydrogenation. In this case, only the 2-position is attacked; the over-all yield is about 48%.²² Anthracene is acylated in the 9-position (60%).³² The isomeric acetylacenaphthenes have been prepared from the hydrocarbon and acetic acid, using hydrogen fluoride as catalyst.^{23,24} Substituted tetralins have been prepared by the Friedel-Crafts reaction under mild conditions. Thus, tetralin or its 7-alkylated derivative reacts with acid anhydrides in the presence of aluminum chloride and nitrobenzene solvent at 0° (60-80%).²⁵ Naphthalene is acetylated or benzoylated almost exclusively in the alpha position by the action of an acyl chloride and aluminum chloride in methylene or ethylene chloride solution.³⁰ Also, on treatment with benzoyl chloride in the presence of iodine, it is converted predominantly to the  $\alpha$ benzoyl isomer (52%).²⁶ Aroyl halides respond better than anhydrides to this treatment.

Heterocyclic ketones derived from furan or thiophene have been prepared similarly using an iodine catalyst. Short reaction time and low temperature are used. Thus, thiophene and acetic anhydride heated for 1 hour with a small quantity of iodine at about 100° yields 2-acetylthiophene (86%); similarly, furan yields 2-acetylfuran (75%).⁵⁹-Other catalysts for the acylation of furan and thiophene have been used, namely, zinc chloride,⁶⁰ silica-metal oxides,⁶¹ stannic chloride,⁶² aluminum chloride,⁶³ boron trifluoride, 64,65,68 and orthophosphoric acid.66 The last-named catalyst has been employed for the preparation of eleven compounds including 2acetylthiophene (94%), 2-benzoylthiophene (99%), and 2-acetyl-5-methylthiophene (91%). Other oxygenated acids have been studied, but orthophosphoric acid is the most effective and produces the fewest side reactions. In general, the acid anhydride as acylating agent is preferred over the acyl halide. In introducing large acyl groups, it is convenient to use merely the organic acid and phosphorus pentoxide. Yields of acylated thiophene range from 45% with acetic acid to 97% with oleic acid.66

 $\gamma$ -Aryl-substituted acids, Ar(CH₂)₃COOH, or their halides undergo an internal Friedel-Crafts reaction to give 1-tetralones.¹⁵ The acids may be cyclized directly with 85-95% sulfuric acid as in the preparation of 4methyl-1-tetralone (74%).⁸⁰ However, sulfonation by-products may occur. Thus, 1-tetralone from  $\gamma$ -phenylbutyric and sulfuric acid mixture is obtained in 49% yield, whereas it is prepared from the acyl chloride and aluminum chloride in 92% yield.⁷⁹ A better catalyst for direct cyclization is hydrofluoric acid. The organic acid is simply treated at room temperature with 10 parts hydrofluoric acid for several hours. In this manner, 1-tetralone (92%), 1-hydrindone (73%), 1,2-benz-10-anthrone (75%), and other difficultly obtained anthrones have been prepared.²⁴ In preparing acyl chlorides with thionyl chloride for the Friedel-Crafts reaction, care must be taken to remove this reagent completely since it may lead to side reactions. Better results have been obtained by employing phosphorus pentachloride for formation of the acyl halide, but again the harmful phosphorus oxychloride Ch. 10

must be removed. This is readily accomplished by codistillation with benzene. The acyl chloride may be cyclized without further purification. A solution in benzene, nitrobenzene, or chlorobenzene *is added to* aluminum chloride below 25°.¹⁷ Polyphosphoric acid has also been applied in the synthesis of cyclic ketones.⁷⁵

Ring closure of this type has been brought about by the reaction of a lactone, namely,  $\gamma$ ,  $\gamma$ -dimethylbutyrolactone, with benzene and aluminum chloride to give 4,4-dimethyl-1-tetralone (70%).⁸⁶ Tetralones containing halogen atoms⁸⁷ or alkoxyl groups^{17,88} have been prepared. Also,  $\beta$ -haloalkyl ketones of the type ArCOCH₂CH₂Cl undergo intramolecular condensation to furnish 1-indanones⁷⁴

Diketones have been prepared by the Friedel-Crafts method. Both acyl chloride groups in adipyl chloride react with benzene in the presence of aluminum chloride to form the diketo compound, 1,4-dibenzoylbutane (81%).⁴⁹ When diketene is treated with benzene under the conditions of the Friedel-Crafts reaction, benzoylacetone,  $C_6H_5$  COCH₂COCH₃, is formed (73%).⁹⁰

$$CH_2 = C - CH_2 + C_6H_6 \xrightarrow{AICI_3} C_6H_5 COCH_2COCH_3$$
$$| \qquad | \qquad 0 - C = 0$$

This synthesis of 1,3-diketones may be extended by the use of other available diketenes.

Olefinic ketones have been obtained from the reaction of acyl chlorides or anhydrides with olefins using the conditions of the Friedel-Crafts reaction. The intermediate chloro ketones are oftentimes stable and must be treated with sodium bicarbonate or dimethylaniline to complete the dehydrohalogenation. In this manner, 1-acetyl-1-cyclohexene  $(62\%)^{92,103}$ and 1-butyryl-1-cyclohexene  $(60\%)^{93}$  are prepared.



More recently, it has been shown that acetylation of cyclohexene with acetic anhydride in the presence of stannic chloride is less troublesome and does not necessitate dehydrohalogenation.⁹⁷

The reaction has been investigated in detail using diisobutylene and acetic anhydride whereby methyl octenyl ketones are formed in yields as high as 60%. Studies of catalysts show zinc chloride to be the most effective. It is used in relatively small concentrations compared with the catalyst requirements for aromatic hydrocarbons. A low temperature  $(40^\circ)$  is maintained to prevent polymerization of the olefin. On a small scale, a preformed complex of the anhydride and zinc chloride is prepared and treated with the olefin.^{94,95}

Under these conditions, the addition of acyl chlorides to acetylene leads to  $\beta$ -chlorovinyl ketones (62-80%).⁹⁹

$$RCOCI + HC \equiv CH \xrightarrow{AICI_3} RCOCH = CHCI$$

Ketones containing a double bond have also been prepared by the reaction of unsaturated acyl halides with aromatic hydrocarbons ⁹⁶ in the usual Friedel-Crafts manner. Acylation of benzene and its homologs with  $\beta$ , $\beta$ -dimethylacroyl chloride leads to dimethylvinyl aryl ketones, (CH₃)₂C = CHCOAr (75-90%).¹⁰⁰ The latter compounds are stable and do not undergo intramolecular condensation.

Three types of *balo ketones*, differing in the position of the halogen atom, have been prepared by the Friedel-Crafts reaction: (1) a halogenated acyl chloride and an aromatic hydrocarbon give a haloalkyl aryl ketone, e.g.,  $\beta$ -bromopropiophenone, C₆H₈ COCH₂CH₂Br, (93%)¹¹² from benzene and  $\beta$ -bromoacetyl chloride; (2) an aryl halide upon acylation gives a haloaryl alkyl ketone, e.g., *p*-fluoroacetophenone (74%) from fluorobenzene and a preformed acetic anhydride-aluminum chloride complex¹¹⁰ or *p*-bromoacetophenone (79%)¹¹³ from bromobenzene and acetic anhydride; and (3) an aryl-substituted alkyl halide on acylation gives an aryl alkyl ketone containing a halogenated side chain, e.g.,  $\beta$ -(*p*-acetylphenyl)-ethyl bromide, *p*-CH₃COC₆H₄CH₂CH₂Br (83%),¹¹² from  $\beta$ -phenylethyl bromide and acetyl chloride. In general, the reactions are carried out in carbon disulfide with aluminum chloride catalyst.

Phenolic ketones have been prepared by modifications of the Friedel-Crafts reaction. In preparing acyl derivatives of phenol, a preformed complex of phenol and aluminum chloride is treated with an acyl chloride. Ortho and para isomers are formed with the latter predominating.¹²³ On the other hand, in preparing acyl derivatives of the polyhydric phenols and naphthols, a preheated solution of zinc chloride and acylating acid is treated with the hydroxy compound (Nencki reaction).¹²⁴⁺¹²⁶ This procedure gives poor yields when applied to the monohydroxy phenols.¹²⁷ Phloroglucinol, sym-C₆H₃(OH)₃, condenses with acetonitrile in the presence of zinc chloride and hydrochloric acid to give phloroacetophenone (87%) (Hoesch-Houben reaction).^{128,129} An imino chloride is probably formed, viz., CH₃CN + HCl  $\rightarrow$  CH₃C(Cl)=NH, which reacts with the phenol to give an intermediate ketimine hydrochloride. Ch. 10

sym-(HO)₃C₆H₃ + CH₃C(Cl) = NH  $\xrightarrow{Z_nCl_2}_{HCl}$  sym-(HO)₃C₆H₂C(= NH · HCl)CH₃  $\xrightarrow{H_2O}_{Sym}$ -(HO)₃C₆H₂COCH₃

Acylation of aromatic ethers yields the corresponding *keto ethers*.¹³¹ Typical examples are found in the conversion of anisole with aluminum chloride and appropriate acyl halide to *p*-methoxybutyrophenone  $(85\%)^{132}$ and *p*-methoxyphenyl benzyl ketone (84%).¹³³ Mild catalysts like iodine²⁶ and phosphorus pentoxide²⁹ are also effective.

Aryl-substituted  $\gamma$ -keto acids are readily obtained by acylation of aromatic compounds with succinic anhydride, e.g.,  $\beta$ -benzoylpropionic acid (85%).¹³⁵

$$C_6H_6 + \bigcup_{CH_2CO} C_6H_5 CO(CH_2)_2CO_2H$$
  
CH₂CO

Phenol,¹³⁶ bromobenzene,⁸⁷ t-butylbenzene,¹³⁷ and acenaphthene¹³⁸ give keto acids in good yields. The reaction is applicable to other aliphatic dibasic acid anhydrides like glutaric anhydride,¹³⁹ adipic polyanhydride,¹⁴⁰ and maleic anhydride,¹⁴¹ furnishing  $\omega$ -aroyl acids. An excellent discussion including experimental conditions and procedures has been given.¹⁴²

Optimum conditions for the reaction of naphthalene,⁶⁷⁰ biphenyl,¹⁴⁴ and chlorobenzene¹⁴⁵ with phthalic anhydride have been determined. The corresponding keto acids are obtained in 90-98% yields. In this type of condensation, nitrobenzene is stated to be far superior to other solvents with respect to solvent power and ability to slow side reactions.¹⁴⁶

Another variation consists in the reaction between an aromatic nucleus and the ester-acyl chloride of a dibasic acid followed by hydrolysis of the resulting keto ester. This synthesis affords  $\omega$ -aroyl aliphatic acids in 85-95% yields and is applicable to benzene, its alkyl, halo, alkoxy, and alkylalkoxy derivatives as well as to thiophene and naphthalene.^{139,147}

When the interaction of an ester-acyl chloride and an aromatic nucleus is employed for the synthesis of a *keto ester*, then a reesterification step is recommended.¹⁴⁷ Certain  $\alpha$ -*keto esters* have been prepared by using ethyl oxalyl chloride, CO₂ClCO₂C₂H₅, as the acylating agent, e.g., ethyl  $\alpha$ -thienyl glyoxylate (50%),¹⁵⁰ ethyl  $\alpha$ -naphthylglyoxylate (46%),¹⁵¹ and ethyl *p*-biphenylylglyoxylate (70%).¹⁵² An example of acylation of an aromatic ester is found in the preparation of the *para* and *meta* isomers of ethyl acetylphenylacetate (80%).¹⁵³

Nitro- and amino-aromatic compounds do not respond favorably. However, acylations of acetanilide with acetic anhydride using iodine catalyst  26  or with acetyl chloride and aluminum chloride catalyst  154  have been reported. o-Nitrophenyl 2-thienyl ketone has been prepared.  155 

Use of  $\alpha$ -cyanopropionyl chloride results in a cyano ketone, e.g.,  $\alpha$ -cyanopropiomesitylene,  $C_6H_2(CH_3)_3COCHCNCH_3$  (20%).¹⁵⁶

179. Oxidation of Secondary Alcohols

## $R_2$ CHOH $\xrightarrow{(0)}$ $R_2$ CO

Oxidation of secondary alcohols to ketones with sulfuric-chromic acid mixture proceeds readily. In general, the reaction is carried out in an aqueous medium keeping the temperature at 20-40°. Occasionally, the reaction temperature is elevated to 50-80° for additional periods. 157, 158 Vigorous stirring is required for slightly soluble alcohols. The yields vary from 60% to 80% for the  $C_{5}$  - $C_{10}$  aliphatic ketones. Isopropyl s-butyl ketone is prepared by carrying out the oxidation of the alcohol at  $40^{\circ}$ for 36 hours (68%).¹⁵⁹ Substituted cyclohexanones have been prepared in good yields (70-93%) with widely varying reaction times and temperatures.^{169-172,675} Oxidation of insoluble aromatic carbinols is carried out with acetic acid as the solvent. Thus, *m*-biphenylmethyl carbinol and 2phenylcyclohexanol are oxidized at  $45-50^{\circ}$  to the corresponding ketones in 80% yield.^{173,47} Concentrated nitric acid at reflux temperature for 20 minutes has been used for the preparation of hexamethylacetone (81%).¹⁷⁴ The mechanism of chromic acid oxidation of alcohols has been dis-Cussed. 168, 175, 186

Among the diketones prepared by oxidation of an alcohol group are the the benzils from the corresponding benzoins and aliphatic a-diketones from the acyloins. The oxidation of the former is accomplished with copper sulfate in pyridine, e.g., benzoin to benzil (86%),¹⁹⁰ and the latter with cupric acetate in 70% acetic acid, e.g., 4-hydroxy-3-hexanone to dipropionyl (70%).¹⁹¹ Ferric chloride in a boiling ether-water mixture is also used as an oxidant.¹⁹¹ Certain alicyclic 1,2-diketones are prepared by oxidation of the acyloins with chromic anhydride in glacial acetic acid, e.g., 3,3,6,6-tetramethyl-1,2-cyclohexanedione (64%).²⁰¹ Improvements in carrying out oxidations of benzoins and in processing the reaction mixtures have been described. 192-194 In one oxidation procedure, a catalytic quantity of cupric acetate is employed, which is continuously regenerated by the action of ammonium nitrate. The reduction product of the latter is ammonium nitrite, which is decomposed simultaneously to nitrogen and water.¹⁹⁴ Benzoins carrying halo,¹⁹⁵ methoxyl,^{198,212} and dialkylamino¹⁹⁹ groups have been oxidized.

Secondary acetylenic alcohols, prepared in good yields from acetylenic Grignard reagents and aldehydes, are oxidized to acetylenic ketones

mole of alkoxide is recommended to remove any water present in the reaction mixture. A high ratio of 40 to 80 moles of ketone for 1 mole of a steroid is desirable. For simpler alcohols, 20 moles of acetone or methyl ethyl ketone, 3-10 moles of cyclohexanone, or 1-3 moles of quinone or benzil are satisfactory. The equilibrium is displaced by the large excess of the ketone reactant to give the desired product. It is preferable to carry out the oxidation at 55-60°. The use of an inert diluent, such as benzene, toluene, or dioxane, minimizes ketone condensation products.

The reaction has been extended to nitrogen-containing compounds by the use of an alkali alkoxide, such as potassium *t*-butoxide.²²⁴

181. Catalytic Dehydrogenation of Secondary Alcohols

$$R_2$$
CHOH  $\xrightarrow{-H_2}$   $R_2$ CO

Ketones are formed in good yields by vapor-phase dehydrogenation of secondary alcohols over copper chromite catalyst. An example is the conversion of cyclohexanol to cyclohexanone (60%).²²⁵ A liquid-phase dehydrogenation using Raney nickel catalyst at 170° has proved successful for preparing C₄-C₉ aliphatic ketones (79-95%).²²⁶ The catalyst can be reused. The procedure has been modified by employing a hydrogen acceptor, such as cyclohexanone. The mixture of catalyst, hydrogen acceptor, alcohol, and toluene is merely refluxed for short periods.²²⁷

The reaction may also be performed over a mixed-oxide catalyst at  $280^{\circ}$  and 100 atm. of ethylene, which serves as the hydrogen acceptor,³⁶³ as illustrated by the preparation of  $\beta$ -tetralone from 1,2,3,4-tetrahydro-2-naphthol.⁴³⁵ By the same procedure, diisobutyryl, a *diketone*, has been prepared from the acyloin (27%).²²⁸

Dehydrogenation of 1,4-pentanediol over a copper chromite catalyst in the liquid phase yields the corresponding hydroxy ketone, 5-hydroxy-2-pentanone (30%).²²⁹

182. Oxidation of Olefinic Compounds (Ozonolysis)

$$R_2C = CHR \xrightarrow[H_2O]{O_3;} R_2CO + RCHO$$

Ozonolysis of olefins has found little application in the preparation of ketones for synthetic purposes. Since the ozonides may be explosive, the method has been limited to the reaction of small quantities of olefins, mostly for degradation studies and location of double bonds.

Improved conditions for the oxidation of olefins with ozone to ketones (60-70%) have been described.²³¹⁻²³³ The use of Dry Ice temperature and methylene chloride as solvent lessens the loss of volatile olefins in the

**KETONES** 

Ch. 10

P reparations of *halo ketones*, such as  $\alpha, \alpha'$ -dichloroacetone  $(75\%)^{205}$ and 1-chloro-4-phenyl-2-butanone (82%),¹⁴³ and *keto ethers*, such as 4methoxycyclohexanone  $(65\%)^{207}$  and sym-dialkoxyacetones (40-70%),²⁰⁶ have been carried out by the oxidation of the corresponding alcohols with chromic-sulfuric acid mixture. Methyl esters of certain  $\alpha$ -hydroxy acids can be oxidized to the  $\alpha$ -keto esters with lead tetraacetate in boiling benzene as in the preparation of methyl phenylglyoxylate (84%).²¹³ Also, esters of lactic acid, CH₃CHOHCO₂R, have been converted to pyruvic esters by the action of potassium permanganate.^{218,692} This same reagent has been employed for changing mandelic acid to the  $\alpha$ -keto acid, benzoylformic acid (72%).²¹⁴

A general synthesis for  $\gamma$ -keto acids involves the oxidation of  $\gamma$ lactones with bromine in the presence of magnesium hydroxide.^{216,217} The lactones are readily obtained by interaction of oxides and sodiomalonic esters with subsequent hydrolysis and decarboxylation (method 323). The over-all yields are excellent.

Nitro alcohols from the condensation of aromatic aldehydes with sodium salts of nitroparaffins are oxidized to  $\alpha$ -nitro ketones with chromicacetic acids, as illustrated by the preparation of  $\alpha$ -nitroacetophenone,  $C_6H_5$  COCH₂NO₂ (80%).²¹⁹

180. Oxidation of Alcohols by Ketones (Oppenauer)

$$R_{2}CHOH + R'_{2}CO \xleftarrow{\text{Metal}}{R_{2}CO} + R'_{2}CHOH$$
  
alkoxide

Oxidation of alcohols by ketones in the presence of a metallic alkoxide has proved especially valuable in the steroid field.^{221,222} The literature to 1951 has been reviewed.⁶⁹³ An extensive investigation of experimental conditions using aluminum *t*-butoxide has been carried out.²²³ The merits of various ketones as hydrogen acceptors have been considered. In general, methyl ethyl ketone and cyclohexanone are best for high-molecular-weight alcohols. The condensation products from these ketones may be removed by steam distillation. Benzil is recommended for preparing aldehydes and ketones capable of being distilled from the reaction mixture below 100°. Benzil or quinone may be used for ketone products boiling from 100° to 200°, especially if they are likely to condense. The optimum temperature, duration of reaction, and concentration of reactants may vary for the alcohol oxidized. In general, 0.5 mole of alkoxide per mole of alcohol gives good results; however, an additional 0.5

Ch. 10

oxygen stream. The ozonides are decomposed by zinc and water in the presence of acetic acid or by catalytic hydrogenation with 1% palladiumcalcium carbonate catalyst. Ozonides also react with Raney nickel to give aldehydes and ketones.²³⁴ A new ozonizer has been described.²³¹

Several olefinic compounds have been oxidized with potassium permanganate or chromic acid to furnish ketones. An example is the oxidation of diisobutylene to methyl neopentyl ketone (56%).²³⁵

Methylenecyclobutane has been converted to cyclobutanone by oxidation to the corresponding glycol with performic acid and subsequent cleavage of the glycol with lead tetraacetate (75% over-all).²³⁷

183. Oxidation of Methylene Groups

 $\operatorname{ArCOCH}_{2}\operatorname{Ar} \xrightarrow[]{\operatorname{SeO}_{2}} \operatorname{ArCOCOAr}$ 

Compounds containing reactive methylene groups are readily converted by suitable oxidizing agents to carbonyl derivatives. Reviews of the reaction employing selenium dioxide ⁵⁶⁴ or nitrogen oxides ⁵⁶⁵ are given.

Selenium dioxide is commonly applied to a methylene group activated by a carbonyl group, although an adjacent double bond, aromatic ring, or heterocyclic ring may also subject it to attack. The conversion of aldehydes and methyl ketones leads to glyoxals (method 157). Best results are obtained when only one methylene group is present. For example, aryl benzyl ketones have been oxidized almost quantitatively to substituted benzils by treatment with selenium dioxide and acetic anhydride at 140-150° for 3 to 4 hours.⁵⁶⁶ Dioxane has been used as solvent with this oxidizing agent. The products are purified by activated-charcoal treatment. Other experimental details are illustrated in the preparation of methyl phenyl diketone  $(60\%)^{567}$  and 2,4,6-trimethylbenzil (83%).⁵⁶⁸

Cyclic ketones like cyclohexanone  569  and cycloheptanone  570  yield the corresponding a-diketones in 35% and 90% yields, respectively.

Compounds having methylene groups situated between two activating groups—ketone, acid, or ester—are readily oxidized with selenium dioxide to furnish triketones, ⁵⁷¹ keto diesters, ⁵⁷²  $\alpha$ ,  $\beta$ -diketo esters, ⁵⁷³ or  $\alpha$ -keto acids. ⁵⁷⁴

Another procedure utilizes oxides of nitrogen. An example is the oxidation of diethyl malonate to diethyl oxomalonate,  $CO(CO_2C_2H_5)_2$ , with nitrous anhydride (76%).⁵⁷⁵ Synthesis of alkyl aryl  $\alpha$ -diketones has been accomplished under similar conditions (30-40%).⁵⁷⁶

A benzyl side chain is changed to a benzoyl group by vigorous oxidation. For example, 4,4'-diacetylaminodiphenylmethane²⁴⁸ is converted with chromic acid to the benzophenone in 70% yield. Also, 2-benzoylpyridine is made from 2-benzylpyridine in 86% yield by the action of potassium permanganate.²⁴⁴

Oxidation of cyclohexene with chromic anhydride in acetic acid gives a 37% yield of 2-cyclohexenone; likewise, 1-methylcyclohexene goes to 3-methyl-2-cyclohexen-1-one (20%).⁴⁴¹

Certain aromatic compounds containing alkyl groups have been converted to carbonyl derivatives by liquid-phase oxidation of these groups with air in the presence of chromium oxide catalysts.

$$ArCH_2CH_3 \xrightarrow[Catalyst]{O_2} ArCOCH_3$$

By the simple procedure of passing dispersed air through a suspension of *m*-diethylbenzene, 1% chromia, and 4% calcium carbonate at  $130^{\circ}$  for 40 hours, a 50% yield of *m*-ethylacetophenone is obtained.²³⁸ Likewise, aromatic esters, ^{239,246,247} acetophenones,⁴ and halogenated benzenes²⁴⁵ containing alkyl groups yield the corresponding *keto esters*, *diketones*, and *halo ketones*, respectively. Manganese dioxide catalyst has also been used.²⁴⁰ Tetralin can be oxidized to  $\alpha$ -tetralone with dispersed air in the absence of a catalyst (56%).²⁴¹

#### 184. Cleavage of $\beta$ -Keto Esters

The formation of  $\beta$ -keto esters and their cleavage represents an important synthesis for many types of ketones. The methods of synthesis of various  $\beta$ -keto esters are considered under methods 211 to 215 and have been reviewed.⁶¹⁴ Quite often the intermediate  $\beta$ -keto esters are not isolated but are cleaved directly to ketones. With few exceptions (methods 266 and 308), the cleavage always results in the formation of a ketone. Syntheses involving these cleavages are considered here.

Monoalkylation of ethyl acetoacetate and subsequent ketonic hydrolysis gives methyl ketones of the type CH₃COCH₂R (acetoacetic ester synthesis).

$$CH_{3}COCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{NaOC_{2}H_{5}} CH_{3}COCHRCO_{2}C_{2}H_{5} \xrightarrow{H^{+}} CH_{3}COCH_{2}R$$

$$\downarrow NaOC_{2}H_{5}; R'X$$

$$\downarrow NaOC_{2}H_{5}; R'X$$

$$CH_{3}COCHRR' + CO_{2} + C_{2}H_{5}OH \xleftarrow{H^{+}} CH_{3}COCRR'CO_{2}C_{2}H_{5}$$

The over-all yields resulting from the use of primary alkyl bromides are 50-70%. The method is illustrated by the preparation of methyl *n*-amyl ketone. (61%).²⁵⁶ Monoalkylation with secondary alkyl bromides is less complete, and the over-all yields are lower (20-30%).

Dialkylation followed by hydrolysis gives methyl ketones of the type  $CH_3COCHRR'$  The over-all yields are 30-40%, often depending on which

alkyl group is introduced first when R and R' are different.^{250, 251} For example, in the preparation of methyl methylisopropylacetoacetate, better results are obtained if the methyl group is substituted first (60% ester yield)²⁵² (cf. method 213). Hydrolysis of disubstituted acetoacetic esters, CH₃COCRR'CO₂C₂H₃, in which R and R' are methyl or ethyl groups usually gives ketones in 60 to 80% yields.^{253, 254} When R is a *n*-butyl group and R' is either a *n*- or *s*-butyl group, the ketones are formed in low yields, ester formation being favored (cf. method 308); however, these particular ketones are available in good yields by cleaving the corresponding *t*butyl acetoacetates.²⁵⁵

Sulfuric²⁵⁶ or phosphoric²⁵⁷ acids are used for the ketonic hydrolysis, as in the preparation of methyl *n*-amyl ketone. Also, the hydrolysis is brought about by boiling with acetic-sulfuric acid mixture,²⁵⁸ hot 5% potassium hydroxide solution,²⁵⁹ or hydriodic acid if the hydrolysis is especially difficult.²⁶⁰ Benzylacetone,  $C_6H_5$  CH₂CH₂COCH₃, is formed by hydrolysis of the corresponding  $\beta$ -keto ester with water at 150-250° and 200 atm. Dialkylated  $\beta$ -keto esters are stable to this treatment; therefore, a single ketone can be obtained from a mixture of mono- and di-alkylated  $\beta$ -keto esters.²⁵³

Difunctional compounds have been prepared by this series of reactions. Alkylation with unsaturated halides²⁸⁴⁻²⁸⁷ or alkylation of unsaturated  $\beta$ -keto esters²⁶² leads to *olefinic ketones*. Halogenation of a substituted acetoacetate followed by acetic-sulfuric acid hydrolysis gives a-balo ketones. An example of this transformation is the chlorination of ethyl benzylacetoacetate with sulfuryl chloride (69%) followed by hydrolysis and decarboxylation to give  $\alpha$ -benzyl- $\alpha$ -chloroacetone (84%).²⁸⁸ If alkoxy halides are used, keto ethers result. In this manner,  $\delta$ -ethoxybutyl methyl ketone (35% over-all)²⁹¹ and  $\delta$ -phenoxybutyl methyl ketone (61%)²⁹² have been prepared. Similarly, alkylation using dialkylamino halides yields dialkylamino ketones in about 60% over-all yield,³⁰⁶ as illustrated by the conversion of  $\gamma$ -diethylaminopropyl chloride and ethyl sodioacetoacetate to 1-diethylamino-5-hexanone (60%),³⁰⁷ An example of the reaction of a halogenated ester leading to a keto acid is found in the preparation of 8-ketononoic acid (68%).²⁹⁷  $\gamma$ -Keto- $\alpha$ -alkyl acids have been prepared by a one-step hydrolysis and decarboxylation of certain cyanoacetoacetic esters.296

RCHCNCH(COCH₃)CO₂C₂H₅  $\xrightarrow{H^+}$  RCH(COOH)CH₂COCH₃ + CO₂ + C₂H₅OH

 $\alpha$ -Keto acids have also been obtained by treating  $\alpha$ -oxalyl esters with boiling dilute sulfuric acid for 6 hours (8-94%).²⁹⁵ These starting materials are prepared by condensation of ethyl oxalate and a second ester (method 211).

$$(CO_{2}C_{2}H_{5})_{2} + RCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{\text{NaOC}_{2}H_{5}} C_{2}H_{5}O_{2}CCOCHRCO_{2}C_{2}H_{5}$$

$$\downarrow H^{+}$$

$$RCH_{2}COCO_{2}H + CO_{2} + C_{2}H_{5}OH$$

 $\beta$ -Keto esters prepared by additional methods (methods 211-215) are cleaved to give other types of ketones. (1) Acylation of the sodium enolates of disubstituted acetic esters followed by hydrolysis and decarboxylation gives ketones of the type R'COCHR₂.

$$HCR_{2}CO_{2}C_{2}H_{5} \xrightarrow{(C_{6}H_{5})_{3}CNa} Na^{+}(CR_{2}CO_{2}C_{2}H_{5})^{-}$$

$$\downarrow R'COCI$$

$$R'COCHR_{2} + CO_{2} + C_{2}H_{5}OH \xleftarrow{H^{+}} R'COCR_{2}CO_{2}C_{2}H_{5}$$

The over-all yield from ester and acid chloride is 38-58%.²⁶² (2) Selfcondensation of high-molecular-weight esters and hydrolysis of the resulting  $\beta$ -keto esters gives symmetrical ketones of the type RCH₂COCH₂R.

$$\mathrm{RCH}_{2}\mathrm{CO}_{2}\mathrm{C}_{2}\mathrm{H}_{5} \xrightarrow{\mathrm{NaOC}_{2}\mathrm{H}_{5}} \mathrm{RCH}_{2}\mathrm{COCHRCO}_{2}\mathrm{C}_{2}\mathrm{H}_{5} \xrightarrow{\mathrm{H}^{+}} \mathrm{RCH}_{2}\mathrm{COCH}_{2}\mathrm{R}$$

The over-all yields (R equals  $n-C_3-C_8$ ,  $n-C_{11}$ , and  $n-C_{12}$ ) from the esters vary from 55% to 78%.²⁵⁹ Certain heterocyclic ketones, namely, 8-acetylquinoline and  $\beta$ -acetylpyridine, have been prepared through a mixed ester condensation.^{279,280} (3) If acetoacetic ester is acylated in the form of its sodium enolate and carefully hydrolyzed, a new  $\beta$ -keto ester is formed. Alkylation of this keto ester followed by hydrolysis gives ketones of the type RCOCH₂R'.

$$CH_{3}COCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{NaOC_{2}H_{5};} CH_{3}COCH(COR)CO_{2}C_{2}H_{5}$$

$$RCOCHR'CO_{2}C_{2}H_{5} \xleftarrow{NaOC_{2}H_{5};} RCOCH_{2}CO_{2}C_{2}H_{5}$$

$$\downarrow H^{+}$$

$$RCOCH_{2}R'$$

The over-all yields are stated to be 13-20% from the acid chloride;³⁰³ however, the directions are not clear.^{304, 305} If the chloride of a dibasic acid is used, a *diketone* results. Thus, terephthalic acid chloride gives *p*-diacetylbenzene (15% over-all).²⁸³ *o*-Chloroacetophenone, a *balo ketone*, has been prepared from ethyl acetoacetate and *o*-chlorobenzoyl chloride (54%).²⁹⁰

Aminomethyl ketones have been prepared by the  $\alpha$ -oximination of  $\beta$ -keto esters followed by reduction and cleavage.³¹⁰

$$RCOCH_{2}CO_{2}C_{3}H_{5} \xrightarrow{HNO_{3}} RCOC(NOH)CO_{2}C_{2}H_{5} \xrightarrow{Zn} (CH_{3}CO)_{2}O$$

$$RCOCH(NHAc)CO_{2}C_{3}H_{5} \xrightarrow{HC1} RCOCH_{2}NH_{2} \cdots HCI$$

Symmetrical ketones are sometimes prepared from acyl chlorides by way of diketenes and  $\beta\text{-keto}$  acids.  691 

$$2RCH_2COCI \xrightarrow{(C_2H_3)_3N} RCH_2COC(R) = C = O \xrightarrow{H_2O} (RCH_2)_2CO + CO_2$$

The addition of ethyl sodiomalonate to olefinic ketones followed by ring closure and  $\beta$ -keto ester cleavage leads to 1,3-cyclohexanediones. The reaction has been applied to the formation of 2-alkyl-5-phenyl-1,3cyclohexanediones⁵⁸³ and is typified by the preparation of 5,5-dimethyl-1,3-cyclohexanedione (85%).⁵⁸⁴ Other cyclizations for formation of fourand five-membered rings have been described.^{585,586}

185. Decarboxylation of Acylmalonic Acids

$$RCOCI + C_2H_s OMgCH(CO_2C_2H_s)_2 \rightarrow RCOCH(CO_2C_2H_s)_2 \xrightarrow{H^+} RCOCH_3$$

A convenient method for preparing alicyclic or aromatic methyl ketones consists in the acylation of the ethoxymagnesium derivative of diethyl malonate with the appropriate acyl chloride, followed by acid hydrolysis and decarboxylation of the resulting  $\beta$ -keto diester.³¹²⁻³¹⁴ The last step is carried out like the ketonic cleavage of  $\beta$ -keto esters.²⁶² The over-all yields are 60-85%.

The method is especially valuable for the preparation of certain substituted acetophenones, namely, o- and p-nitroacetophenone and o-chloroacetophenone.³¹⁴ Methods involving Grignard, Friedel-Crafts, or nitration reactions are apparently not applicable for the preparation of these nitro compounds, and the Friedel-Crafts reaction is not applicable to the preparation of o-chloroacetophenone. Although the acetoacetic ester synthesis has been used for the preparation of these and other substituted acetophenones, it may be complicated by O-acylation and also by cleavage at either acyl group (cf. method 212).

High-molecular-weight aliphatic ketones of the type  $\text{RCOCH}_2\text{R}'$  are made by acylation of substituted dibenzyl esters of malonic acid followed by hydrogenolysis and decarboxylation.³¹⁶

$$\begin{array}{c} \text{R'CH}(\text{CO}_{2}\text{CH}_{2}\text{C}_{6}\text{H}_{5})_{2} \xrightarrow{\text{NaOC}_{2}\text{H}_{5};} \text{RCOCR'}(\text{CO}_{2}\text{CH}_{2}\text{C}_{6}\text{H}_{5})_{2} \\ \xrightarrow{\text{H}_{2}} \text{RCOCR'}(\text{CO}_{2}\text{H})_{2} \xrightarrow{\text{-CO}_{2}} \text{RCOCH}_{2}\text{R} \\ \xrightarrow{\text{H}_{2}} \text{RCOCR'}(\text{CO}_{2}\text{H})_{2} \xrightarrow{\text{-CO}_{2}} \text{RCOCH}_{2}\text{R} \end{array}$$

Decomposition of acylated malonic esters over aromatic sulfonic acids leads to  $\beta$ -keto esters (method 214).

186. Thermal Decarboxylation of Acids

$$RCO_{2}H \xrightarrow[Heat]{Catalyst} R_{2}CO + CO_{2}$$

Symmetrical ketones (R equals ethyl, propyl, isopropyl, *n*-butyl, isobutyl, and *n*-heptyl) have been prepared in nearly "quantitative" yields by passing the acid vapors over thoria at high temperatures. Studies have been made of metallic oxide catalysts and temperature of reaction. In general, a thoria catalyst has been favored at temperatures of 400- $500^{\circ}$ .³¹⁰ The apparatus and catalyst preparation have been described.³¹⁹

More recently, it has been shown that a thoria "aerogel" catalyst is superior to the thoria-hydrogel and thoria-on-pumice catalysts. High yields at a lower temperature  $(310^{\circ})$  and high flow rates are obtained.³²⁰

The distillation of lauric acid (or other high-boiling acids) over the catalyst bed is difficult and gives poor yields; however, when the lower-boiling methyl ester is used, laurone is obtained in a 93% yield.³²¹ Similarly, the ethyl ester of 9-undecenoic acid gives undecylenone (86%).

A large number of unsymmetrical ketones have been prepared by the thermal decarboxylation method;^{322, 323} however, the yields are not recorded. In general, by using a large excess of the short-chain acid (which minimizes formation of the long-chain symmetrical ketone) over thoria at 400°, yields of about 50% are obtained.^{35, 303} Methyl benzyl ketone and other alkyl aryl ketones have been synthesized in this manner (65%).³¹⁹ The use of manganese oxide catalyst at 400° gives about the same results.³²⁴

The thermal decarboxylation of a mixture of barium salts has been used to prepare unsymmetrical ketones; the yields are not stated.³²⁵ The earlier procedure has been modified by carrying out the reaction *in*  $vacuo^{326}$  in an iron flask. Glass reaction vessels are inferior. In this manner, a large number of the high-molecular-weight methyl ketones, C₉, C₁₀, C₁₂-C₁₇, and C₁₉, are prepared in 54-67% yields. Cyclopentanone has been synthesized in 80% yield by distillation of adipic acid from barium hydroxide at 295°.³²⁷ In a study of metallic oxides and carbonates, magnesium oxide is preferred for the liquid-phase ketonization of stearic acid at 330-360° (95%).³²⁸ A convenient method for the preparation of dibenzyl ketone is the reaction of phenylacetic acid, acetic anhydride, and fused potassium acetate at 150° (41%).³³⁰ Several pyridyl ketones have been made in a similar way.^{339, 340}

Acids which have no  $\alpha$ -hydrogen atoms may yield unsymmetrical ketones on decarboxylation instead of the anticipated symmetrical compounds.³³¹

187. Interaction of Grignard Reagents and Nitriles

$$R'MgX + RCN \longrightarrow RR'C = NMgX \xrightarrow{H_2O} RCOR'$$

Grignard reagents react with nitriles to form ketimine salts which on hydrolysis give ketones. For the most part, the procedure is successful only for high-molecular-weight aliphatic and aromatic nitriles, although the lower-membered aliphatic nitriles respond favorably with aromatic Grignard reagents.^{353,354,386} Poor results have been associated with a competing reaction of the Grignard reagent at the  $\alpha$ -hydrogen of the nitrile to form a hydrocarbon and a magnesium derivative which may react further at the nitrile group, viz., RCH₂CN + R'MgX  $\rightarrow$  R'H + (RCHCN)MgX.⁶⁷⁷

Alkyl  $\alpha$ -naphthyl ketones from  $\alpha$ -cyanonaphthalene and RMgX are prepared when R is methyl through *n*-hexyl, cyclohexyl, or phenyl (35-60%).³⁴⁶ The Grignard reagents are treated with the cyanide for 5 hours in boiling toluene or benzene-ether mixture. The intermediate ketimine salt is then hydrolyzed with aqueous ammonium chloride. Acylated aromatic compounds can be prepared readily in this way, avoiding isomeric mixtures encountered by the Friedel-Crafts method. Thus, the pure acetyl-, propionyl-, and benzoyl-phenanthrenes have been synthesized (50-87%).^{21,347,348}

Ketones from fatty acid nitriles and high-molecular-weight Grignard reagents are often contaminated with hydrocarbons.^{349,350} This difficulty can be avoided by discarding the ethereal solution containing the hydrocarbon products before the hydrolysis of the ketimine salt.³⁵¹ The ketone-hydrocarbon mixture has been separated by dissolving the ketone in warm concentrated sulfuric acid, removing the insoluble hydrocarbons, and then reclaiming the ketone by diluting the acid solution with water.³⁰³

The reaction of olefinic Grignard reagents with nitriles to give *ole/inic ketones* is not common. An example is the preparation of 4-hexen-3-one from allylmagnesium bromide and propionitrile (25%).³⁷¹

Nitriles carrying relatively unreactive halogen atoms have been used to prepare *balo ketones*. Thus, 4-chloro-2-ethoxybutyronitrile,  $CH_2ClCH_2CH(OC_2H_3)CN$ , has been converted to 3-chloro-1-ethoxypropyl alkyl ketones in 40-75% yields.³⁶⁹ Reaction of methyl Grignard reagent and o-bromophenyl cyanide gives o-bromoacetophenone (80%).⁴⁷⁰

Diphenylacetoin, a hydroxy ketone, has been prepared in 45-60% yield by the action of benzyl Grignard reagent on phenylacetaldehyde cyanohydrin.³⁷² An important method for the preparation of *keto ethers* is the reaction of cyano ethers with Grignard reagents. In this manner, a large number of  $\alpha$ -alkoxy aliphatic ketones have been made (30-70%).^{208,373-377} Likewise, phenoxymethyl alkyl ketones have been prepared (20-64%).³⁸⁰ When the Grignard reagent contains an  $\omega$ -alkoxy group,  $\omega$ -alkoxy ketones are formed.³⁷⁹

Ethyl  $\beta$ -oxovalerate, a  $\beta$ -keto ester, is prepared from ethyl Grignard reagent and ethyl cyanoacetate (58%).^{386,387} Amino ketones are conveniently made by the action of aromatic Grignard reagents on  $\gamma$ -diethyl-aminobutyronitrile, (C₂H₅)₂NCH₂CH₂CH₂CN, in 80-90% yields.³⁸⁸

188. Interaction of Organometallic Reagents and Anhydrides

$$(\text{RCO})_2 O \xrightarrow{\textbf{R}' \text{MgX}} \text{RC} \xrightarrow{-\text{OCOR}} \xrightarrow{\text{H}_2 O} \text{RCOR}'$$

A large number of ketones have been prepared by treating anhydrides with Grignard reagents. It has been shown that the yields are best at low temperatures ( $-75^{\circ}$ ). Primary, secondary, and tertiary aliphatic or aromatic Grignard reagents give high yields when treated with acetic, propionic, or butyric anhydrides.³⁸⁹⁻³⁹¹

A variety of ketones may be made using cadmium alkyls (50-70%). In the preparation of alkyl aryl ketones, reaction of the aliphatic rather than the aromatic anhydride is preferred.³⁹² Keto acids result when phthalic anhydride ³⁹²⁻³⁹⁴ or dimethyl succinic anhydride (60-70%)³⁹⁵ is used.

Acetylenic ketones of the type  $RC \equiv CCOCH_3$  are prepared by the reaction of acetic anhydride and acetylenic Grignard reagents. The latter compounds are readily made from acetylenic hydrocarbons and ethylmagnesium chloride, and are added slowly to the anhydride at a low temperature. This procedure prevents a secondary reaction of the desired product with a second molecule of Grignard reagent. In this manner, 3-octyn-2-one (58%) and 3-nonyn-2-one (55%) are prepared.³⁹⁶ Sodium phenylacetylide has been treated with various anhydrides, including acetic, benzoic, cinnamic, and crotonic, to give the corresponding phenylacetylenic ketones.³⁹⁷

189. Interaction of Organometallic Reagents and Acyl Chlorides

$$2RCOCI + R'_2Cd \rightarrow 2RCOR' + CdCl_2$$

Addition of cadmium alkyls to acyl chlorides yields the corresponding ketones. The method has been reviewed,⁴⁰⁰ and the experimental condi-

tions have been studied.⁴⁰¹ The cadmium reagents are readily prepared by adding anhydrous cadmium chloride to Grignard reagents. It is advisable to check the completeness of the cadmium alkyl formation by the standard Gilman test for Grignard reagent. The use of an alkyl bromide for formation of the cadmium reagent and of benzene as solvent during the coupling reaction has improved the yield. A variety of ketones have been prepared, and yields of 50-80% may be expected if highly reactive ketones are not formed and if the cadmium alkyl is not secondary or tertiary.^{401,402} In the preparation of methyl *n*-butyl ketone (74%), *n*-propyl-*n*-heptadecyl ketone (65%), acetophenone (85%), and ethyl  $\alpha$ -furyl ketone (61%), the smaller alkyl fragment comes from the cadmium alkyl. Either the aryl or alkyl cadmium compound is satisfactory for formation of alkyl aryl ketones,

The reaction has been extended to the formation of difunctional compounds. High-molecular-weight keto esters and halo ketones are formed by using carbalkoxy acyl chlorides and halogenated acyl chlorides, respectively. Methyl 4-keto-7-methyloctanoate (75%) and 1-chloro-2hexanone (51%) have been prepared in this way.^{401,403} Also,  $\beta$ -aroylpropionic esters are made by the reaction of diarylcadmium reagents with  $\beta$ -carbomethoxypropionyl chloride.⁶⁷⁸ In the preparation of a carbalkoxy acyl chloride having a branched carbon skeleton, an ester interchange may occur to give a mixture of the two possible carbalkoxy acyl chlorides.⁵⁸¹ Alkoxy acyl chlorides react with cadmium alkyls to give keto ethers, as in the preparation of  $\gamma$ -phenoxypropyl methyl ketone (78%) from  $\gamma$ -phenoxybutyryl chloride and methylcadmium²⁹² and of certain 2-alkoxyethyl phenyl ketones from  $\beta$ -alkoxypropionyl chloride and diphenylcadmium.⁴⁰⁴

A large number of methyl and ethyl ketones have been prepared in about 70% yields by employing zinc alkyls; however, full directions are not given.⁴⁰⁵ Reaction of zinc alkyls and unsaturated acyl chlorides in the presence of a zinc-copper couple gives *olefinic ketones* in 75-90% yields. By this procedure, 5-ethyl-4-hepten-3-one (74%) and 3,4-diethyl-4-hexen-2-one (83%) are made.⁴⁰⁶ High-molecular-weight *keto acids* ( $C_{28}$ - $C_{35}$ ) have been prepared in good yields (77-92%) by adding ethereal Grignard reagents to anhydrous zinc chloride, replacing the ether with benzene as solvent, and then treating with carbethoxy acyl chlorides under reflux.^{407, 408}

In general, the cadmium reagent is preferred to the zinc reagent because it is more readily prepared and is less reactive toward the carbonyl group.

Grignard reagents have been used directly in mono-^{409,410,539} and diketone⁴¹⁵ formation. More recently, it has been found that a catalytic quantity of cuprous chloride greatly increases the yields.^{416,419} An example is the formation of hexamethylacetone in 70-80% yield from *t*butylmagnesium chloride and trimethylacetyl chloride. Diketones have also been prepared by coupling magnesium enolates of certain ketones with high-molecular-weight acyl chlorides.⁵³⁹

190. Interaction of Grignard Reagents and Amides

$$\operatorname{RCONH}_{2} \xrightarrow{2R' \operatorname{MgX}} \operatorname{RC} \xrightarrow{\operatorname{OMgX}} \operatorname{RCOR}'$$

This reaction has been used extensively for the preparation of neopentyl and t-butyl ketones from n-alkyl Grignard reagents and t-butylacetamide and trimethylacetamide, respectively, (52-78%).^{427,428} In addition, a large number of *halo ketones* have been prepared by the reaction of aromatic Grignard reagents with chloro-substituted aromatic amides (60-80%).⁴²⁹⁻⁴³² For example, benzyl Grignard reagent and m-chlorophenylacetamide react to give benzyl m-chlorophenyl ketone (80%). In a similar manner, the use of mandelamide or p-methoxyphenylacetamide leads to *hydroxy ketones* or *keto ethers*, respectively.⁴²⁹

191. Interaction of Grignard Reagents and  $\alpha$ , $\beta$ -Olefinic Ketones

 $RCH = CHCOR + R'MgX \rightarrow RR'CHCH = C(OMgX)R \xrightarrow{H_2O} RR'CHCH_2COR$ 

Aliphatic and aromatic ketones have been prepared by this method. The Grignard reagent adds 1:4 to the conjugated ketone system. This is illustrated by the addition of ethyl Grignard reagent to ethylideneacetone,  $CH_sCH=CHCOCH_s$ , to give a 75% yield of 4-methyl-2-hexanone.⁴³⁷ Highly branched ketones have been prepared in small yields.^{438,439} The amount of 1:4 addition varies considerably with the Grignard reagent^{440,441} (cf. method 89). Certain methoxy-substituted chalcones, ArCH=CHCOAr, have been treated successfully.¹³²

192. Interaction of Grignard Reagents and Halo Ketones



The most successful application of this method has been the synthesis of 2-substituted cyclohexanones by the action of either aliphatic¹⁴⁴ or aromatic⁴⁴⁵ Grignard reagents on 2-chlorocyclohexanone. An example is the formation of 2-phenylcyclohexanone ( $R = C_6H_s$ ) in 60% yield.⁴⁴³ The

aromatic moiety may also be substituted with alkyl or alkoxyl groups. The method has been extended to the preparation of 2-phenylcyclopentanone (50%).⁴⁴⁶

193. Interaction of Organometallic Reagents and Esters 447-450 (cf. method 91)

$$RCO_2C_2H_s + R'MgX \rightarrow RC - OMgX \xrightarrow{H_2O} RCOR'$$
  
R'

194. Interaction of Organometallic Reagents and Salts of Carboxylic Acids^{449,451}

$$RCO_2Na + RMgX \rightarrow RC - OMgX \xrightarrow{H_2O} RCOR$$

195. Hydrolysis of Ketone Derivatives

$$R_2C = NOH + H_2CO \xrightarrow[H^+]{H_2O} R_2CO + H_2C = NOH$$

Oximes, which are produced by several synthetic routes (cf. Chapter 27), are readily hydrolyzed to carbonyl compounds. Thus, the acetylbenzoyl monoxime, prepared by the nitrosation of propiophenone, has been converted to the diketone by hydrolysis with dilute sulfuric acid.⁴⁵²

In another instance, the action of aliphatic Grignard reagents on methyl  $\alpha$ -nitrosoethyl ketone with subsequent acid hydrolysis furnishes  $\alpha$ -hydroxy ketones of the type CH₃(R)COHCOCH₃.⁴³⁶ The oxime of 1-methylcyclopenten-5-one is hydrolyzed by dilute sulfuric acid (54%). It is prepared by the action of nitrosyl chloride on 1-methylcyclopentene with subsequent dehydrohalogenation with pyridine.⁵⁹⁸



A method for hydrolyzing p-quinone oximes with the aid of cuprous chloride has been described; the yields are excellent.⁴⁵⁹

Aliphatic ketones have been prepared by a five-step synthesis from nitroparaffins.

$$\begin{array}{c} \text{R'CH_NO_2} \xrightarrow{\text{RCHO}} \text{RCHOHCHR'NO_2} \\ \downarrow \\ \text{RCH_COR'} \leftarrow \text{RCH_CR'} = \text{NOH} \leftarrow \text{RCH} = \text{CR'NO_2} \end{array}$$

The nitroparaffins are condensed with aldehydes to yield nitro alcohols (70-80%), which on acetylation and treatment with an aqueous methanolic solution of sodium bicarbonate are converted to nitroölefins (80-84%). These compounds are reduced to the corresponding ketoximes by zinc and acetic acid (50-60%).⁴⁵³ Reduction with iron and dilute hydrochloric acid gives good yields of either ketones or ketoximes, depending upon the amount of hydrochloric acid used.⁶⁷⁹ The ketoximes can be hydrolyzed to ketones by refluxing with dilute sulfuric acid in the presence of formalin, which acts as a hydroxylamine acceptor (80%). The over-all yields from the nitroölefins are 40-60%. In this manner, certain otherwise difficultly obtainable ketones are prepared. Semicarbazones have been converted to ketones by treatment with sodium nitrite in glacial acetic acid,⁴⁵⁴ with aqueous oxalic acid,⁴⁵⁵ or with phthalic anhydride.⁴⁹⁰

a-Keto acids or esters may be prepared by the hydrolysis of the corresponding oximino esters with 85% formic acid and nitrosylsulfuric acid at 0°.⁴⁵⁷ Although a-oximino acids can be obtained in excellent yield from a-halo acids or substituted acetoacetic or malonic esters,⁴⁵⁸ their hydrolysis may proceed poorly.²⁹⁵

Elimination of carbon dioxide from a carboxylic acid in the presence of a diazonium salt leads to an aryl hydrazone (Japp-Klingemann). Subsequent hydrolysis in the presence of pyruvic acid furnishes the carbonyl compound, as illustrated by the preparation of 2-*n*-butyrylpyridine (81%).⁵³⁵

196. Selective Reduction of  $\alpha,\beta$ -Olefinic Ketones

$$RCH = CHCOR \xrightarrow[Catalyst]{H_2} RCH_2CH_2COR$$

Selective hydrogenation of  $\alpha$ , $\beta$ -olefinic ketones to saturated ketones can be accomplished through careful control of the temperature, duration of reaction, and use of a catalyst active enough to permit low-temperature hydrogenation.⁴⁶⁴ Thus, mesityl oxide, benzalacetone, and benzalacetophenone have been reduced in 90-100% yields to the corresponding saturated ketones.⁴⁶⁵ Preparations of nickel catalysts used in these reductions are described.^{465,466} Ch. 10

Other olefinic ketones have been reduced selectively at room temperature and atmospheric pressure over a platinum or palladium catalyst to give good yields of the ketones, namely, 5-methyl-3-heptanone (94%),^{467, 468} diisobutyl ketone (100%),⁴⁶⁹ and a-benzylacetophenone (81–95%).⁶⁸⁸ Selective hydrogenations of some 3-alkyl-2-cyclohexenones have been carried out over palladinized charcoal in essentially quantitative yields.⁴⁷³ Preparation of platinum catalyst has been described.⁴⁷⁰ Many olefinic ketones prepared by the aldol condensation or by acylation of olefins have been hydrogenated; however, the yields are not always stated.⁴⁷¹ Benzalacetone, C₆H₃CH=CHCOCH₃, is selectively reduced to benzylacetone in a 63% yield by the action of sodium amalgam in acetic acidalcohol solution.⁴⁷⁶

Unsaturated keto esters obtained by the Knoevenagel condensation have been selectively hydrogenated in good yields with Raney nickel catalyst at room temperature and 45 atm. to saturated *keto esters*, e.g., ethyl  $\alpha$ -heptylacetoacetate (97%) from ethyl  $\alpha$ -heptylideneacetoacetate.⁶⁸⁹

197. Partial Reduction of Phenols



Phenols can be partially hydrogenated in the presence of alkali to cyclohexanones. An example is the synthesis of dihydroresorcinol, or 1,3-cyclohexanedione, by hydrogenation of resorcinol in the presence of Raney nickel and an equimolar quantity of sodium hydroxide (95%).⁴⁸¹ Under these same conditions, pyrogallol furnishes a stable enediolone.⁴⁸²



Hydrogenation of 2-naphthol in the presence of palladium and an organic base like N-ethylmorpholine gives 2-tetralone (40%);⁴⁸³ other conditions for its reduction lead to other products.^{484,483} By means of Raney nickel and alkali, 1,6-dihydroxynaphthalene has been partially reduced to 6hydroxy-1-tetralone.⁴⁸⁴

Reductions of this type may also be carried out by the action of sodium and ammonia, sodium and alcohol,⁴⁸⁶ or Raney nickel-aluminum alloy and alkali.⁴⁸⁴ 198. Alkylation of Ketones

$$RCH_2COCH_2R \xrightarrow{\text{NaNH}_2;} RCH_2COCHRR'$$

Many highly branched ketones have been prepared by the alkylation of simpler ketones, sodium amide or sodium alkoxides generally being used to form the enolate ion. For example, ketones of the type RCOR', where R and R' represent many combinations of methyl (Me), ethyl (Et), n-propyl (Pr), isopropyl, n-butyl, s-butyl, t-butyl, isoamyl, Et,CH--, Et, C-, n-Pr, CH-, n-PrMeCH-, isoPrCH, -, and n-PrMe, C-, have been prepared; however, the yields are not always reported.⁴⁸⁸ Alkylation of alicyclic ketones like cyclopentanone and cyclohexanone has also been studied. In these reactions all available a-hydrogens may be replaced, disubstitution on one side of the carbonyl group occurring first. 489-493 Alkyl aryl ketones of the types ArCOCH, R, ArCOCHR'R", and ArCOCR'R'R'" are made by alkylating acetophenone and its derivatives with allyl or benzyl halides.⁴⁹⁵ In general, the reactivity of the alkyl halide decreases with increasing carbon content and complexity. Oftentimes, an alkyl sulfate is employed as the alkylating agent. A review of the earlier work has been presented.⁴⁹⁴ The method is illustrated by the conversion of diisopropyl ketone to hexamethylacetone in the presence of sodium amide (52%).¹⁶⁵

Methyl  $\gamma$ -chloropropyl ketone, CH₃CO(CH₂)₃Cl, undergoes intramolecular cyclization to methyl cyclopropyl ketone under the influence of 50% aqueous sodium hydroxide.⁶⁹⁴

The effect of the basic reagent has been studied in the methylation of phenylacetone. Monomethylation proceeds better with sodium isopropoxide than with sodium ethoxide. Introduction of a second alkyl group is accomplished best with potassium *t*-butoxide. Sodium *t*-amylate allows many alkylations that fail or give poor results when carried out with sodium amide.⁴⁹³ 1,1-Disubstituted 2-tetralones are conveniently prepared by alkylation in the presence of sodium hydride, no monosubstituted products being formed with this reagent.⁴⁹⁶

The temperature of the reaction has been shown to be important. For example, in the alkylation of 2-methylcyclopentyl phenyl ketone, the reaction carried out at the temperature of the refluxing benzene solution gives the desired product; however, the use of boiling xylene leads to O-alkylated products, and boiling toluene gives mixtures.⁶⁶⁸

Diketones have been alkylated by a modified procedure.^{500,501} The monosodio derivative is prepared in ether by treating the diketone with powdered sodium. It is then allowed to react with the alkyl iodide in acetone or dioxane solution. This scheme has been applied in the prepCh. 10

aration of *n*-butylbenzoylacetone, PhCOCH(*n*-Bu)COCH₃, ethylacetylacetone, CH₃COCH(C₂H₅)COCH₃, and other high-molecular-weight compounds. In a similar manner, acyloin enolates are alkylated with primary halides in ethyl ether or toluene to furnish  $\alpha, \alpha$ -dialkyl- $\alpha'$ -hydroxy ketones.⁵⁰²

Alkylation with allyl bromide leads to *olefinic ketones*, e.g., 2-allylcyclohexanone (62%) and  $\alpha$ -allylethyl ethyl ketone (56%) from the corresponding ketones.^{286,503} Desoxybenzoin, C₆H₅CH₂COC₆H₅, and  $\beta$ -diethylaminoethyl chloride, (C₂H₅)₂NCH₂CH₂Cl, combine to form the corresponding *amino ketone*.⁵⁰⁴

199. Interaction of Diazomethane and Carbonyl Compounds

$$RCHO + CH_2N_2 \rightarrow RCOCH_3 + N_2$$

Diazomethane reacts with carbonyl compounds to introduce methylene groups.⁵⁰⁵ In the case of aldehydes, nitrogen is lost and the corresponding epoxide, methyl ketone, or higher homolog of the starting aldehyde is formed, depending on the nature of the R group and catalytic influences. Similarly, ketones yield epoxides and homologous ketones. The latter may react further with additional diazomethane. For these reasons, the reaction may be complicated.

Cyclic ketones react to form the higher homologs; for example, cyclohexanone is converted to cycloheptanone (63%).⁵⁰⁶

An extension of this reaction has been the use of other aliphatic diazoalkanes. Benzaldehyde and the appropriate diazo compound give propiophenone, butyrophenone, and valerophenone in almost quantitative yield.⁵⁰⁷ Furylaldehyde also reacts to form furyl alkyl ketones⁵²⁶

200. Catalytic Hydration of Acetylenic Compounds

$$RC \equiv CH + H_2O \xrightarrow{Catalyst} RCOCH_3$$

This method finds commercial application in the production of acetaldehyde from acetylene. Mercuric salts in the presence of dilute sulfuric acid act as the catalyst. The reaction has been extended to higher alkylacetylenes, which are obtained in about 60% yield from sodium acetylide and alkyl halides. These compounds are readily hydrated in aqueous solutions of acetone, methanol, or acetic acid to give 80-90% yields of the corresponding methyl ketones, for example, methyl butyl, methyl amyl, and methyl hexyl ketones.⁵⁰⁶ Hydration has been accomplished by passing the acetylenic hydrocarbon and steam over a phosphoric acid catalyst at 150-204° and atmospheric pressure.⁵⁰⁹

Acetylenic carbinols (from sodium acetylide and a ketone) are readily hydrated in the presence of mercuric sulfate to give the corresponding by droxy ketones in high yields.^{510, 511}  $\beta$ -Keto acids have been prepared by hydration of acetylenic acids.⁵¹²  $\alpha$ -Acyloxy ketones, R₂C(OCOCH₃)COCH₃, are made by the action of carboxylic acids on acetylenic carbinols.⁶⁵⁷

201. Dehydration and Rearrangement of a-Diols

$$R_2COHCOHR_2 \xrightarrow{H^+} R_3CCOR + H_2O$$

The classical example of this method is the rearrangement of pinacol to pinacolone (72%).⁵¹³ The reaction is usually brought about by dilute sulfuric acid. A second procedure is the passage of a mixture of the pinacol and steam over silica-phosphoric acid at 275-300°; the yield of pinacolone is 94%.⁵¹⁴ Benzopinacol,  $(C_6H_5)_2$ COHCOH $(C_6H_5)_2$ , is dehydrated and rearranged by iodine in acetic acid (96%).⁵¹⁵ Under the same conditions, diphenyl-(1-hydroxy-1-cyclopentyl)-carbinol undergoes rearrangement accompanied by ring expansion to form 2,2-diphenylcyclohexanone (98%).⁵¹⁶

The reaction has been extended to other pinacols; however, their preparation may involve lengthy procedures.⁵¹⁷ Certain benzoins on reduction with metals and acids yield diols which are then converted to desoxybenzoins.⁵¹⁸⁻⁵²⁰ These conversions involve the migration of a hydrogen atom rather than an alkyl group. Similarly, aromatic *keto ethers* and *amino ketones* have been prepared.^{520,521}

A modification of this reaction is the hydrolysis and rearrangement of olefin dibromides.⁵²² The most successful of these conversions is the preparation of methylisopropyl ketone (59%) from trimethylethylene dibromide.⁵²³

202. Decomposition of Glycol Monoalkyl Ethers

$$\frac{\text{RCHBrCO}_{2}C_{2}H_{5}}{65\%} \xrightarrow{\text{NaOC}_{2}H_{5}} \text{RCH}(\text{OC}_{2}H_{5})\text{CO}_{2}C_{2}H_{5} \xrightarrow{\text{R'MgX}} \text{RCH}(\text{OC}_{2}H_{5})\text{COHR'}_{2}}{75\%} \xrightarrow{\text{H}^{+} \downarrow 90\%} \text{PO}\%$$

$$\frac{\text{RCOCHR'}_{2} \xleftarrow{\text{H}^{+}}{68-96\%} \text{RC}(\text{OC}_{2}H_{5}) = \text{CR'}_{2}}{68-96\%}$$

Ketones of the type RCOCHR'₂, where R represents methyl, ethyl, isopropyl, *n*-butyl, *n*-hexyl, or phenyl, and R' represents ethyl, *n*-propyl, *n*-butyl, or phenyl, have been prepared by a series of reactions similar to that used in the preparation of aldehydes (method 167).⁵²⁵

In an analogous manner, the monoethyl ether of dihydroresorcinol reacts with alkylmagnesium halides to form 3-alkyl-2-cyclohexenones.⁴⁷⁵



203.  $\beta$ -Diketones by Acylation of Ketones



The acylation of ketones having reactive methylene groups by esters^{501, 541} or anhydrides^{542, 543} is a common and convenient method for preparing  $\beta$ -diketones. An ester is used in the presence of a base, and an anhydride with boron trifluoride. From an unsymmetrical ketone two types of ketones result, depending on which  $\alpha$ -hydrogen atom reacts. In general, the boron trifluoride method leads to the formation of type I ketones, R'COCH,COCH,R, whereas the basic reagent method favors type II ketones, R'COCHRCOCH, Either sodium amide 544, 549 or sodium hydride 545, 549 is preferred as the basic reagent. Unsymmetrical ketones having only one reactive side (such as acetophenone) respond the same by either method,⁵⁴² Also, symmetrical ketones take the same course by both methods, e.g., acetone to acetylacetone.^{546, 547} Many representative ketones-methyl ethyl, methyl isopropyl, methyl isobutyl, methyl t-butyl, diisobutyl, methyl n-amyl, cyclohexanone, and acetophenone-have been converted to diketones. The acylating agents are varied and include ethyl esters or anhydrides of acetic, propionic, n-butyric, isobutyric, n-valeric, n-caproic, benzoic, anisic, phenylacetic, lauric, and nicotinic acids. Thus, a large number of  $\beta$ -diketones have been prepared in varying yields, mostly in the range of 30-60%.

 $\beta$ -Diketones are also formed by acylation of the enol esters of ketones with anhydrides in the presence of boron trifluoride.⁶⁷³

$$(RCO)_{2}O + R'C = CHR'' \xrightarrow{BF_{3} \text{ then}} RCOCHR''COR'$$

If the acylating ester is diethyl oxalate, then an  $\alpha, \gamma$ -diketo ester, or a substituted glyoxalate, is formed.⁵⁵⁵⁻⁵⁵⁷ These substances are important intermediates in the synthesis of certain  $\beta$ -keto esters (method 307).

$$\text{RCOCH}_{3} + (\text{CO}_{2}\text{C}_{2}\text{H}_{5})_{2} \xrightarrow{\text{NaOC}_{2}\text{H}_{5}} \text{RCOCH}_{2}\text{COCO}_{2}\text{C}_{2}\text{H}_{5}$$

204.  $\alpha$ ,  $\beta$ -Olefinic Ketones from Acetylenic Carbinols

 $RCH_{COH}(R')C \equiv CH \xrightarrow{HCO_{2}H} RCH = C(R')COCH_{COCH_{2}}$ 

Ethynyl carbinols on heating with formic acid are isomerized to  $\alpha,\beta$ olefinic ketones; for example, isohexylmethylethynylcarbinol is taken to 3,7-dimethyl-3-octen-2-one (48%)²⁶⁴ and 1-ethynyl-1-cyclohexanol to 1acetyl-1-cyclohexene (70%).⁵⁹⁴ Small amounts of unsaturated aldehydes may contaminate the product.

205.  $\gamma$ ,  $\delta$ -Olefinic Ketones from Alkenyl Esters of  $\beta$ -Keto Acids

$$CH_{3}COCH_{2}CO_{2}CH_{2}CH_{2}CH_{2}CH_{2} \xrightarrow{170-250^{\circ}} CH_{3}COCH_{2}CH_{2}CH_{2}CH_{2}+CO_{2}$$

Acetoacetates or benzoylacetates of  $\beta$ , $\gamma$ -unsaturated alcohols-methallyl alcohol, crotyl alcohol, methylvinylcarbinol, cinnamyl alcohol, etc.on heating at 170-250° evolve carbon dioxide and produce  $\gamma$ , $\delta$ -olefinic ketones (23-88%).⁵⁹⁵ The unsaturated acetoacetates are readily prepared by the action of diketene on the corresponding unsaturated alcohols.

206. Cyclopentenones from Lactones



 $\gamma$ -Methyl- $\gamma$ -lactones having a methylene group adjacent to the  $\gamma$ -carbon are converted conveniently to 2-alkyl-3-methyl-2-cyclopentenones (30-50%). The method is not applicable, however, to the preparation of 2-cyclopentenone and 3-methyl-2-cyclopentenone. The lactone is simply warmed over phosphorus pentoxide, and the product is distilled from the reaction mixture.⁵⁹⁶

207.  $\beta$ -Halo Ketones from Acyl Chlorides and Olefins

 $R'COCI + RCH = CHR \xrightarrow{Catalyst} RCHCICHRCOR'$ 

Addition of acyl halides to olefins in the presence of catalytic amounts of aluminum chloride, stannic chloride, or zinc chloride gives  $\beta$ -halo ketones.⁵⁹⁹ An example is the addition of propionyl chloride to ethylene to form ethyl  $\beta$ -chloroethyl ketone (45%).⁹⁸ Sometimes the addition products are very unstable and undergo spontaneous dehydrohalogenation to olefinic ketones¹⁰¹ (cf. methods 20 and 178).

208. a-Halo Ketones from Alkenyl Esters

 $RCO_2CR' = CH_2 \xrightarrow{Br_3} RCO_2CR'BrCH_2Br \rightarrow RCOBr + R'COCH_Br$ 

The dibromide derivatives of alkenyl esters spontaneously cleave in the cold to form  $\alpha$ -bromo ketones and acyl halides. In this manner, 1bromo-2-hexanone (67%) and 1-bromo-2-heptanone (80%) are prepared. The alkenyl esters are prepared by the catalytic addition of organic acids to alkylacetylenes (30-35%).⁶⁰¹

209. Hydroxy Ketones from Phenolic Esters (Fries)



An ester of a phenol may be converted to the isomeric o or p-hydroxy ketone, or a mixture of both, by treatment with aluminum chloride. Critical discussions of the reaction have been presented⁶⁰² with respect to the influence of temperature, solvents, ester-reagent ratio, and the structure of the acyl⁶⁰³ and phenoxy groups.⁶⁰⁴ By varying the first three factors, it is often possible to prepare predominantly either of the isomeric ketones. The reaction is exemplified in the preparation of o- and p-propiophenol (35% and 40%, respectively)⁶⁰⁸ and 2-hydroxy-4,6-dimethylacetophenone (80%).⁶⁰⁶

210. a-Keto Acids from Azlactones



Hydrolysis of certain unsaturated azlactones with aqueous sodium hydroxide followed by treatment with dilute hydrochloric acid yields a-keto acids. The azlactones are readily prepared from substituted benzaldehydes and hippuric acid.^{608,609} In this manner, phenylpyruvic acid (72% over-all)⁶¹⁰ and *m*-chlorophenylpyruvic acid (52% over-all)⁶¹¹ have been prepared. Other applications have been described.^{608,612,613}

METHODS 210-211

211.  $\beta$ -Keto Esters by Condensation of Esters

$$2RCH_2CO_2C_2H_5 \xrightarrow{NBOC_2H_5} RCH_2COCHRCO_2C_2H_5 + C_2H_5OH$$

The acetoacetic ester condensation consists of a base-catalyzed reaction of two esters (at least one having an  $\alpha$ -hydrogen atom) to form a  $\beta$ -keto ester. The scope, limitations, experimental procedures, and applications have been reviewed.^{614,615,626}

Variations of the reaction include condensation of the same ester, a mixed ester condensation, and ester cyclizations. Improvement in yield of the self-condensation reaction is obtained by removing the alcohol produced, the reaction being forced to completion. In this manner, methyl esters⁶¹⁶ catalyzed by sodium methoxide and ethyl esters¹⁴⁸ catalyzed by sodium ethoxide are self-condensed (50-85%). Ethyl isobutyrate and ethyl isovalerate do not respond to sodium alkoxide catalysis; however, these compounds are readily self-condensed with the aid of diisopropylaminomagne sium bromide.⁶²⁶ Another promising reagent is sodium hydride.⁵⁴⁵ Mixed ester condensations in which only one ester has an ahydrogen atom are satisfactory. These are less complicated than a condensation of two different esters each having reactive a-hydrogens. Thus methyl benzoate condensed under "forcing" conditions with methyl acetate, propionate, or butyrate forms the a-alkylbenzoylacetates, C.H.COCHRCO, CH., in 45%, 61%, and 41% yields, respectively.⁶¹⁶ Similarly, condensation between ethyl oxalate and these esters produces a-ethoxalyl esters. 295,617

 $\operatorname{RCH}_2\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5 + (\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5)_2 \xrightarrow{\operatorname{NaOC}_2\operatorname{H}_5} \operatorname{RCH}(\operatorname{COCO}_2\operatorname{C}_2\operatorname{H}_5)\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5 + \operatorname{C}_2\operatorname{H}_5\operatorname{OH}_5$ 

An example is the synthesis of ethyl  $\alpha$ -ethoxalylpropionate (R = CH₃) in 70% yield.⁶¹⁸ Ethyl oxalate and ethyl succinate form ethyl  $\alpha$ -ethoxalylsuccinate (83%).⁶²⁴ In a mixed ester condensation, the use of a more reactive ester, such as the phenyl or biphenyl ester, helps to prevent side reactions.^{619, 620} Simple heterocyclic esters, namely, ethyl nicotinate and ethyl 8-quinolinecarboxylate, undergo the mixed ester condensation in good yields.^{280, 281, 630} The internal condensation of ethyl adipate to give 2-carbethoxycyclopentanone (Dieckmann reaction) is an example of cyclization (81%).⁶²⁷ 212.  $\beta$ -Keto Esters by Selective Cleavage of  $\alpha$ ,  $\alpha$ -Diacyl Esters

 $CH_{3}COCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{NaOC_{2}H_{5};} RCOCH(COCH_{3})CO_{2}C_{2}H_{5} \xrightarrow{NH_{3}}$ 

 $RCOCH_2CO_2C_2H_5 + CH_3CONH_2$ 

**Ch.** 10

The acylation of simple  $\beta$ -keto esters with acyl chlorides to form diacylacetic esters proceeds readily; however, the subsequent cleavage for removing the smaller acyl group is complicated in that the original keto ester may be regenerated. The optimum conditions for the conversion of benzoylacetoacetic ester to benzoylacetic ester with ammonium chloride and ammonium hydroxide have been studied.⁶³¹ The over-all synthesis of this ester has been described (57%).⁶³² An improved procedure for the ammonolysis of ethyl  $\alpha$ -acetyl- $\beta$ -oxocaproate using gaseous ammonia has been described.³⁸⁶ By a similar process, a series of alicyclic  $\beta$ keto esters has been prepared in over-all yields of 20-40%.⁶³³

Variations of the above procedures are sometimes employed.  $\beta$ -Keto esters may be obtained by alcoholysis of the intermediate diacyl esters by sodium methoxide in methanol,⁶³⁴ as in the preparation of methyl  $\beta$ oxocaprylate (88%).⁶³⁵ The starting  $\beta$ -keto ester can be converted to the new  $\beta$ -keto ester in a single step. Thus, in the synthesis of ethyl benzoylacetate (55%), ethyl acetoacetate and ethyl benzoate are converted directly to this keto ester by distilling the lower-boiling product, ethyl acetate, thereby forcing the reaction to completion.⁶³⁶

 $CH_{3}COCH_{2}CO_{2}C_{2}H_{5} + C_{6}H_{5}CO_{2}C_{2}H_{5} \xrightarrow{\text{NaOCH}_{3}} C_{6}H_{5}COCH_{2}CO_{2}C_{2}H_{5} + C_{6}H_{5}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{2}COCH_{$ 

Finally, the sodium enolate of the new  $\beta$ -keto ester may be alkylated directly to give  $\beta$ -keto esters of the type RCOCHRCO₂C₂H₅.⁶³⁷

213.  $\beta$ -Keto Esters by Alkylation of  $\beta$ -Keto Esters

$$RCOCH_2CO_2C_2H_5 \xrightarrow{NaOC_2H_5} RCOCHR'CO_2C_2H_5$$

This reaction has been considered above (method 184) with respect to ease of mono- and di-alkylation. A large number of condensing agents have been compared, including sodium and potassium ethoxide, sodium in dioxane or toluene, sodium hydride, sodium amide, and sodium or potassium *t*-butoxide.⁶⁴² In general, sodium ethoxide is recommended in the alkylation of acetoacetic ester with primary halides (73%); potassium ethoxide with branched halides, such as isobutyl and *s*-butyl halides (61% and 55%); and potassium *t*-butoxide for introducing a second alkyl group in  $\alpha$ -substituted acetoacetic esters (60-80%). The other reagents are successful in certain cases. Alkylation of 2-carbethoxycyclopentanone with methyl, ethyl, or isopropyl iodides gives the corresponding  $\beta$ -keto esters in 82%, 74%, and 59% yields, respectively.^{268,643} Other examples are found in the preparation of ethyl monomethyl- (71%) and dimethyl-acetoacetic esters (54%)⁶⁴⁴ and ethyl *n*-butylacetoacetate (72%).⁶⁴⁵ Alkylations by ethyl benzenesulfonate,⁶²³ isopropyl acetate or isopropyl alcohol in the presence of boron trifluoride,^{646,647} and dimethyl sulfate⁶⁴⁸ have proved more successful than those by the corresponding alkyl halides.

 $\beta$ -Keto esters containing a double bond,²⁸⁴⁻²⁸⁷ an alkoxyl group,^{291, 292} or an amino group ^{306,307} are formed by alkylating acetoacetic ester with a substituted alkyl halide.

214.  $\beta$ -Keto Esters from Ethyl t-Butyl Acylmalonic Esters

 $C_{2}H_{5}OMgCH(CO_{2}C_{2}H_{5})CO_{2}C(CH_{3})_{3} \xrightarrow{\text{RCOC1}} \text{RCOCH}(CO_{2}C_{2}H_{5})CO_{2}C(CH_{3})_{3}$  $\longrightarrow \text{RCOCH}_{2}CO_{2}C_{2}H_{5} + CH_{2} = C(CH_{3})_{2} + CO_{2}$ 

Olefin elimination and decarboxylation of ethyl *t*-butyl acylmalonates proceeds easily on treatment with toluenesulfonic acid to form  $\beta$ -keto esters of the type RCOCH₂CO₂C₂H₅.^{650, 651} By this procedure, acyl acetates where R is ethyl (63%), cyclohexyl (65%), 2-furyl (70%), benzyl (46%), or propenyl (35%) have been prepared. The limiting factor in this excellent method is the availability of ethyl *t*-butyl malonate; its synthesis has been described.⁶⁵¹

A reaction similar to the above involves the acylation of malonic ester through its magnesium enolate. Thus, the reaction of propionyl chloride with the ester enolate leads to diethyl propionylmalonate. Thermal decomposition of this compound with  $\beta$ -naphthalenesulfonic acid yields ethyl propionylacetate (57%). This modification appears to be general in that it has been extended to the use of aliphatic, aromatic, and carbalkoxy acyl chlorides.⁶⁵²

215.  $\beta$ -Keto Esters by Acylation of Ester Enolates

 $RCOC1 + Na^+[CR'_2CO_2C_2H_5]^- \rightarrow RCOCR'_2CO_2C_2H_5 + NaCl$ 

The acylation of the sodium enolates of esters (prepared by sodium triphenylmethide) with acyl chlorides gives the corresponding  $\alpha$ , $\alpha$ -disubstituted  $\beta$ -keto esters, RCOCR'₂CO₂C₂H₅. The synthesis is direct, and the product is free from monoalkylation products usually encountered

346

by the dialkylation of  $\beta$ -keto esters. By this procedure, ethyl dimethylacetoacetate (51%), ethyl *n*-butyryldimethylacetate (58%), and ethyl benzoyldimethylacetate (65%) have been prepared.^{523,653} In a similar manner, the acylation of malonic ester is performed through its magnesium enolate.^{652,653,655}

216.  $\beta$ -Keto Nitriles by Acylation of Nitriles

 $RCH_2CN + R'CO_2C_2H_3 \xrightarrow{Base} R'COCHRCN + C_2H_3OH$ 

In the presence of sodium ethoxide, nitriles having reactive  $\alpha$ -methylene groups may be acylated with esters to form  $\beta$ -keto nitriles. The method is general and is illustrated by the reaction of alkyl cyanides, where R is C₁ to *n*-C₄, with ethyl benzoate to form the corresponding alkylbenzoylacetonitriles in 53-60% yield.⁶⁵⁹ Aliphatic esters also react; for example, phenylacetonitrile with ethyl acetate gives  $\alpha$ -phenylacetoacetonitrile, C₆H₅CH(CN)COCH₃ (64%).⁶⁶⁰ In the case of the higher-boiling nitriles, the alcohol product is removed by distillation, thereby increasing the yield and decreasing the reaction time.⁶⁶¹

The method has been extended to the preparation of numerous acylacetonitriles in the benzene, naphthalene, furan, and the thiophene series. Modifications of the procedure including the substitution of commercial sodium methoxide for sodium ethoxide and the use of an inert solvent to facilitate stirring have been employed.⁶⁶²

If the acylating ester is capable of undergoing self-condensation in the presence of sodium ethoxide, sodium triphenylmethide is substituted for the latter. An example is the reaction of acetonitrile with ethyl *n*-butyrate to give *n*-butyrylacetonitrile (52%).⁶⁶³

217. Hydrogenolysis of 1, 3-Diketones 487

$$CH_{3}COCH_{2}COCH_{2}CH(CH_{3})_{2} \xrightarrow{H_{2}, Catalyst} CH_{3}CH_{2}CH_{2}COCH_{2}CH(CH_{3})_{2}$$

218. Acid Treatment of Acinitroparaffins 540

$$R_{2}CHNO_{2} \xrightarrow{\text{NaOH}} R_{2}C = N - ONa \xrightarrow{H^{+}} R_{2}CC$$

219. Pyrolysis of Glycidic Acids 341, 342, 367

$$R_2C - CR'CO_2H \xrightarrow{\text{Heat}} R_2CHCOR'$$

220. Rearrangement of a-Bromo Azides 83, 343, 344

 $R_2CBrCON_3 \xrightarrow{\text{Heat}} R_2CBrNCO \xrightarrow{H_2O} (R_2CBrNH_2) \xrightarrow{H_2O} R_2CO$ 

Where R equals ethyl, n-butyl, or cyclopentyl, over-all yields of 35%, 77%, and 60%, respectively, have been obtained.

221. Degradation of Disubstituted Glycolic Acids 345

$$R_2COHCO_2H \xrightarrow{Pb(OAc)_4} R_2CO + H_2O + CO$$

222. Hydrolysis of gem-Dihalides 460-463 (cf. method 151)

 $R_2CX_2 \xrightarrow{H_2O} R_2CO$ 

223. Isomerization of Vinyl Carbinols 528

$$CH_{2} = CHCHO \xrightarrow{RMgx}_{30-50\%} CH_{2} = CHCHOHR \xrightarrow{Cu}_{50-70\%} CH_{3}CH_{2}COR$$

224. Condensation of Furans with Unsaturated Ketones

$$\begin{array}{c} HC - CH \\ \parallel & \parallel \\ CH_3C & CH \end{array} + H_2C = CHCOCH_2R \xrightarrow{H^+} & HC - CH \\ H^+ & \parallel & \parallel \\ CH_3C & CH_4CH_2COCH_2R \\ O & O \end{array}$$

Furans and unsaturated ketones undergo a condensation similar to the Diels-Alder type (cf. method 34) to give furyl-substituted ketones; for example,  $\alpha$ -methylfuran and methyl vinyl ketone react under mild acidic conditions to yield 5-methylfurfurylacetone (65%).⁵²⁹

225. Condensation of Anhydrides 533

$$2(RCH_{2}CO)_{2}O \xrightarrow{BF_{3}} (RCH_{2}COCHRCO)_{2}O \xrightarrow{H_{2}O} RCH_{2}COCH_{2}R$$

226. Acylation of Certain Heterocyclic Compounds 534



Ch. 10

227. Addition of Aldehydes to Olefins 536

$$RCHO + R'CH = CH_2 \xrightarrow{\text{Discety1}} RCOCH_2CH_3R'$$

Typical compounds prepared include 4-decanone (41%), 4-dodecanone (57%), and 7-pentadecanone (75%).

228. Interaction of Hydriodic Acid and Diazo Ketones 537, 538

 $RCOCHN_2 + HI \rightarrow RCOCH_3 + N_2 + I_2$ 

229. y-Diketones from Substituted Furans 589-591

$$\begin{array}{c} HC \longrightarrow CH \\ \parallel & \parallel \\ CH_{3}C \\ \downarrow \\ O \end{array} \xrightarrow{(CH_{2}O, H_{2}O, H_{3}O, H_{3}O,$$

230. a-Diketones by Oxidation of Aryl Acetylenes ⁵⁹²

$$\operatorname{ArC} \equiv \operatorname{CAr} \xrightarrow{\operatorname{CrO_3} - \operatorname{CH_3}\operatorname{CO_2H}}_{60\%} \operatorname{ArCOCOAr}$$

231.  $\gamma$ -Diketones from Ketones⁵⁹³

232. Olefinic Ketones from Hydrocarbons and Carbon Monoxide 597

 $3CH_3CH_2CH_3 + CO \xrightarrow{A1Cl_3, 125 \text{ atm., } 12 \text{ hr.}} (CH_3)_2CH = CHCH_2COCH(CH_3)_2$ 

### 233. a, $\beta$ -Olefinic Ketones from Diketene and Aldehydes ⁹⁰

CH₃COCH == CHR

234.  $\beta$ -Keto Esters by the Reformatsky Reaction ^{658,666}

$$C_6H_5CO_2C_6H_5 + (CH_3)_2CBrCO_2C_2H_5 \xrightarrow{Z_n} C_6H_5COC(CH_3)_2CO_2C_2H_5$$

235. Hydrolysis of  $\beta$ -Iminonitriles⁶⁸²

ArCN + CH₃CN 
$$\xrightarrow[40-60\%]{\text{NaNH}_2}$$
 ArC( = NH)CH₂CN  $\xrightarrow[60-70\%]{\text{H}_2\text{O}}$  ArCOCH₂CN

C_n

C₄ C₅

C₆

с,

Methyl isoamyl ketone

4-Methyl-2-hexanone

3-Methyl-2-hexanone

3-Ethyl-2-pentanone

#### **KETONES**

Ch. 10

### TABLE 32. MONOKETONES

### 353

#### TABLE 32 (continued)

C _n	Compound	Method	(%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), D	
	A	(eton e	etones (continued)			
С,	Methyl neopentyl ketone	182	56	10235	125/760, 1.4018 ²⁵	
		222	96	10 ⁴⁶³	122, 100Dn	
	Methyl <i>t</i> -amyl ketone	179	36	10164	130/733, 1.4100, 112Dn	
	3,4-Dimethyl-2-pentanone	184	36†	10 252	138, 1.4094*, 113Se*	
	Ethyl n-butyl keton e	179	70	10 ¹⁵⁸	148/756, 103Se	
		181	89	10226	148, 101Se	
		186	46	10 ³⁵	146/767, 1.4092*	
		195	48†	10 ⁴⁵³		
	Ethyl isobutyl ketone	189	70	10 ⁴⁰⁵	135/735, 1.407*, 152Se*	
		195	48 †	10 <b>453</b>		
	Ethyl s-butyl ketone	179	63	10 ¹⁶⁸	78Dn	
		184	78	10 ²⁶²	136/760, 1.402*, 137Se*	
	Ethyl t-butyl ketone	190	78	10 <b>427</b>	125/729, 1.4052, 144Dn	
	Di-n-propyl ketone	179	70	10 ¹⁵⁸	144/756, 132Se	
		186	50	10324	145/767, 1.4069, 134Se	
		225	60	10 533	145	
	n-Propyl isopropyl ke-	184	79	10262	136/760, 1.4075, 119Se	
	tone	189	60	10 402	132, 119Se	
	Diisopropyl ketone	179	74	10 ¹⁶⁵	125/742, 1,4001, 98Dn*	
		184	78	10262	125/760, 160Se	
		187	58	10 ³⁵⁶	125, 160Se	
C,	Methyl n-hexyl ketone	179	96	10166	173, 1.4154	
		181	95	10226	172, 121Se	
		184	70	10263	172, 122Se*	
		200	91	10 <b>506</b>	170	
	Methyl isohexyl ketone	184	47†	10 264	171, 1.4146	
		184	77	10 ²³⁴	164/746, 154Se	
		••••	••••	10 455	164/757, 1.4144 ¹⁹ , 77Dr	
	3-Methyl-2-heptanon e	179	68	10167	162/760, 1.415, 82Se	
	3,4-Dimethyl-2-hexanone	191	20	10 <b>439</b>	158, 120Se	
		196	80	10472	155, 118Se	
		196	90	10 468	158, 126Se	
	4-Ethyl-2-hexanone	195	48†	10 ⁴⁵³		
	3-Methyl-3-ethyl-2- pentanone	189	48	10 ¹⁶⁴	79/20, 1.4206*, 74Dn	
	Ethyl i soamyl k <i>etone</i>	189	40	10 <b>41</b> 0	163, 132Se	
		196	92	10 472	160, 132Se	
	5-Methyl-3-heptanone	196	94	10 ⁴⁶⁷	161	
	Ethyl neopentyl ketone	189	51	10 411	92/150, 1.4160°, 136Dn	
	n-Propyl n-butyl ketone	201	25	10527	170,96Se	
	n-Propyl isobutyl ketone	217	42	10 487	150/750, 124Se	
	n-Propyl t-butyl ketone	179	41	10 ¹⁶⁸	124Dn	
		190	67	10 427	145/738, 1.4107, 116Dn	
	Isopropyl s-butyl ketone	179	68	10 ¹⁵⁹	65/50, 1.4080, 71Dn	
		180	70	10 42 4	145, 1,4059	

For explanations and symbols see pp. xi-xii.

TABLE 32. MONOKETONES										
Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.						
Aliphatic Ketones										
Acetone	186	61	10317	56, 1.3592*, 187Se*						
(purification only)			10 ⁶⁶⁷	56*, 1.3592*, 187Se*						
Methyl ethyl ketone	181	79	10 ²²⁶	82, 1.3791*, 135Se*						
Methyl <i>n</i> -propyl ketone	179	74	10 ¹⁵⁷	102						
	184	70	10 ²⁵⁴	102/747, 110Se						
	186	44	10324	102/756, 1.3902, 110Se						
Methyl isopropyl ketone	201	59	10523	94, 1.3879*, 113Se*						
Diethyl ketone	179	57	10 <b>157</b>	103, 156Dn*						
-	186	59	10324	102/751, 1.3922, 139Se						
Methyl <i>n</i> -butyl ketone	179	64	10 ¹⁶⁰	127						
	179	80	10 161	127						
	182	60	10 ²³³	124/738, 1.4002, 107Dn						
	184	50 t	10 ^{2 56}	128						
	188	56†	10 ³⁹²	126/760, 121Se						
	188	83	10 389							
	189	74	10 ⁴⁰²	127, 125Se						
	200	80	10 ⁵⁰⁸	127						
Methyl isobutyl ketone	184	20 †	10 ²⁵⁶	119, 1.3956*, 135Se*, 95Dn*						
	188	80	10 ³⁸⁹	119						
	196	100	10 <b>465</b>	116/740						
Methyl s-butyl ketone	179	81	10 163	116/734, 1.4002						
	188	78 †	10 <b>390</b>	118						
Methyl t-butyl ketone	188	78	10389	106						
	189	40	10 409	106, 158Se*						
	190	52	10 427	105/746, 1.3960, 127Dn, 80-Ox						
	201	72	10 513	107						
	201	94	10 514	106, 1.4019 ²⁵ , 124Dn						
Ethyl n-propyl ketone	179	85	10163	123, 130Dn *						
	181	86	10226	126, 113Se						
	186	62	10 324	125/760, 1.4007, 113Se						
	190	45	10 ***	124						
	223	57	10 348	124						
Methyl <i>n</i> -amyl keton e	179	70	10 ¹⁵⁸	150/750, 123Se						
	179	83	10 ¹⁶⁸	1.4073 ^{25 +} , 74Dn						
	184	61 *	10 ²⁵⁶	151/750, 127Se*						
	184	95	10 ²⁵⁷	150						
	200	87	10 ⁵⁰⁸	149						

10²⁵⁴

10 **451** 

10 **256** 

10³⁶¹

10437

10²⁵¹

10²⁵⁴

142/746, 143Se

139, 1.4057²⁵, 120Se

139/746, 1.4073*, 99Se

139/762, 128Se*

137, 70Se*

144

142

60

50

30 t

52

75

30 †

45

184

194

184

184

191

184

184

C_n

C,

Compound

Ca Isopropyl t-butyl ketone

Methyl *n*-heptyl ketone

4-Methyl-2-octanone

Ethyl n-hexyl ketone

5-Ethyl-3-heptanone

*n*-Butyl isobutyl ketone

n-Butyl t-butyl ketone

Isobutyl s-butyl ketone

Isobutyl t-butyl ketone

Isopropyl t-amyl ketone

Isopropyl neopentyl

Di-t-butyl ketone

C₁₀ Methyl n-octyl ketone

C₁₁ sym-Tetraethylacetone

Di-n-amyl ketone

C₁₂ Methyl *n*-decyl ketone

Methyl n-undecyl ketone

C₁₃ Di-n-heryl ketone

C₁₅ Di-n-heptyl ketone

C₁₇ Di-n-octyl ketone

ketone

C21 Di-n-decyl ketone

C₁₉ Methyl n-heptadecyl

Di-n-nonyl ketone

k eton e

Di-n-butyl ketone

Diisobutyl ketone

3-Methyl-3-ethyl-2-

hexanone

#### **KETONES**

TABLE 32 (continued)

Aliphatic Ketones (continued)

20

54

83

93

54

69

47

41

48 t

40

72

99

20

68

38

100

75

21

35

55

87

81

81

80

52

92

57

64

81

69

94

82

97

93

93

96

95

90

721

481

190

198

181

185

186

182

189

186

195

187

195

184

186

188

190

198

196

184

188

198

193

189

179

185

189

198

196

225

225

184

184

186

185

184

185

184

184

185

184

184

Method  $\frac{\text{Yield}}{\binom{m}{2}}$  Chapter^{tef.} B.p./mm.,  $n_{D}^{t}$ , (M.p.), Deriv.

135/744, 1.4065, 144-Ox

110/86, 1.4222³⁰, 81Dn

166/745, 1.4167, 145Se

135, 132Se*

80/10, 118Se

94/40, 70Se

173, 134Se

93/24, 90Se*

56/11, 122Se

169, 132Se

158, 145Se*

167/760, 133Se

107/180, 129Dn

87/35, 1.4214

154, 1.418822

153, 1.4392

104/30

125/35

100/15

223/760

264, (30)

(28), 117Se

(53), 112-Ox*

(56), 77-Ox

(59)

(64)

178, (42), 120-Ox*

106/13, (15)

107/5, 123Se

150/740, 1.4194

142/100, (14), 126Se

154

168, 132Se

166/745

38/22

192/743, 120Se*

187/751, 112Se*

118Se

10 427

10497

10226

10 ³¹³

10 326

10²³³

10 **420** 

1035

10 **453** 

10 **357** 

10 453

10 259

10320

10³⁹⁸

10427

10⁴⁹⁸

10 **469** 

10262

10³⁹⁹

10 **498** 

10 447

10 419

10 **249** 

10174

10**416** 

10¹⁶⁵

10⁴⁷³

10 ⁵³³

10 ⁵³³

10²⁵⁹

10 691

10 35

10313

10²⁵⁹

10³¹³

10²⁵⁹

10^{2 59}

10³¹³

10²⁵⁹

10265

Ch. 10

#### TABLE 32. MONOKETONES

#### TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphatic	Keton	es (continue)	d)
C 23	Di-n-undecyl ketone (laurone)	184 184 186	98 55† 93	10 ²⁵⁹ 10 ⁶⁹ 10 ³²¹	(69), 40-Ox* (69) (69)
С <b>2</b> 7	Di-n-tridecyl ketone (myristone)	184	97	10 ²⁵⁰	(79), 51-O <b>x</b> *
C 35	Di-n-heptadecyl ketone (stearone)	186	95	10 ³²⁸	(89), 63-Ox* .
		Alio	yclic	Ketones	
c.	Cyclobutanone	182	91	10237	100, 1.4189 ²⁸ , 146Dn
C,	Methyl cycloptopyl ketone	198	83	10 ⁵⁹⁴	111, 1.4226 ²⁵
	Cyclopentanone	186	80	10327	131, 1.4370, 203Se*
C 6	Methyl cyclobutyl ketone	186	60	10 332	137/767, 149Se
		189	66	10 423	136, 1.4283 ²⁸ , 149Se
	2-Methylcyclopentanone	184	80	10207	140, 182Se
		184	561	10333	140/758
	3-Methylcyclopentanone	186	/6	10176	143//33, 1.4329, 1833e
	Cyclonexanone	179	60 60	10 225	156, 165Se
c,	Methyl cyclopentyl	179	54†	10 ¹⁷⁷	155, 143Se
	3,3-Dimethyl-1-cyclo- pentanone	1 <b>8</b> 6	30	10334	153/748, 178Se
	1-Ethylcyclopentanone	184	64	10 ²⁶⁸	161/755, 189Se
	2-Methylcyclohexanone	179	85	10 ¹⁶⁹	165, 1.4487, 191Se
	3-Methylcyclohexanone	179	90	10 170	65/30
		179	78	10 ¹⁶⁹	169, 1.4463, 182Se
		179	88	10 ⁶⁷⁵	64/20, 1.4460
		196	100	10 475	93/15, 1.4446, 185Se
	4-Methylcyclohexanone	179	74	1017	168, 1.4448, 193Se
		179	70	10100	172, 1.4462, 196Se
		179	70	10172	170
	Cycloheptanone	186	40	10333	66/15, 163Se
		199	63	10 000	182
Ca	2-Isopropylcyclo- pentanone	196	88	10 ¹⁷⁸	174, 1.4395 ²⁹ , 202Se
	2-Methyl-5-ethylcyclo- pentanone	184	88	10 <b>269</b>	165/750
	Methyl cyclohexyl ketone	179	85	10163	67/12, 1.4514
		185	66†	10 312	65/12
	2-Ethyl cycloh exanon e	179	86	10675	76/20, 1.4522
		184	74	10 471	74/35, 162Dn
		192	41	10	42/2, 1.4530 ¹⁰ , 162Se
		198	43	10 🖏	67/12, 1.4543**, 163Se

An international states of the states of the

### KETONES

Ch. 10

----

#### TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Alicycli	c Ketor	nes (continu	ed)
C,	3-Ethylcyclohexanone	179	84	10 171	192, 1.4511, 182Se
		196	100	10 ⁴⁷⁵	41/0.8, 1.4537, 175Se
	2,2-Dimethylcyclohex-	198	30	10 <b>***</b>	170/761, 1.4482, 201Se
	anone	198	26†	10 ⁴⁹³	171/760, 1.4499 ¹⁸ , 193Se
	2,4-Dimethylcyclohex-	179	79	10 ¹⁷⁸	176, 1.4430 ¹⁵ , 200Se
	2,6-Dimethylcyclohex-	179	93	10 ⁶⁷⁵	69/20, 1,4470
	anone	179	49	10 ¹⁷⁹	174, 1,4500
		184	91	10 ²⁷⁰	58/10
	3,4-Dimethylcyclohex-	179	93	10 ⁶⁷⁵	81/20, 1.4520
	3,5-Dimethylcyclohex-	179	92	10 ⁶⁷⁵	75/20. 1.4434
	anone	196	78	10474	182/750, 1.4427, 201Se
Ċ,	a-Methyl-a-cyclopentyl- acetone	184	69	10272	79/17, 1.4470, 98Se
•	2, 2, 5, 5-Tetramethylcy- clopentanone	198	35	10 ⁴⁹³	155/760, 1.4280
	2- <i>n</i> -Propylcyclohex- anone	192	30	10 ***	88/17, 120Se
	3-n-Propylcyclohex- anone	196	100	10475	42/0.7, 1.4530, 169Se
	3-Isopropylcyclohex- anone	196	100	10 475	51/1, 1.4540, 195Se
	4-n-Propylcyclohez- anone	179	82	10 ¹⁸⁰	212/740, 1.4514 ²³ , 180Se
	4-Isopropylcyclohex- anone	179	82	10 ¹⁸¹	91/13, 1.4560, 188Se
	3-Methyl-5-ethylcyclo- hexanone	196	94	10474	205/747, 1.4452
	2,2,6 Trimethylcyclohex- anone	198	27	10 ⁴⁹¹	179/767, 1.4480, 209Se, 141Dn
C 10	2, 2, 6, 6-Tetramethylcyclo- hexanone	198	<b>2</b> 6	10 492	184/772, 1.4473, (15)
	cis-a-Decalone	180	80	10 ⁶⁹³	116/18, 1.4939, 220dSe
	2-Decalone	179	94	10182	114/15
C 11	Dicyclopentyl ketone	220	60	10344	112/12, 162Se
-	1-Methyl-2-decalone	179	80	10 ¹⁸⁵	107/7
C 12	4-Cy cloh exyl cy cloh ex- anone	179	87	10184	100/0.1, (31), 216Se
		Aron	natic K	etones	
C.	Acetophenone	178	83	10 6	88/16. (20)

1012

10240

10 553

178

183

187

86

63

70

(19), 60-Ox*

205/760, 1.541, 199Se

TABLE 32. MONOKETONE
----------------------

#### TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Aromatic Ketones (continued)							
C.	Acetophenone (con-	188	75	10 389	202			
•	tinued)	188	75†	10 392	104/31, 199Se			
	· · · · ·	189	85	10 402	91/16, 203Se			
C.	Methyl benzyl ketone	178	32	10 ³³	114/22, 188Se			
		184	86	10273	112/24			
		185	71†	10 312	98/13, 190Se			
		186	65	10 31 9	120/22			
		188	52†	10 ³⁹⁰				
		190	65	10434	125/50, 153Dn			
		195	77	10 <b>679</b>	216			
	Phenyl ethyl ketone	178	58	10 ³⁵	215/763			
		178	84	10 ³⁴	220, 189Dn•			
		187	83	10 ³⁵⁴	106/17, 1.5270, 173Se			
		189	81†	10 ⁴⁰¹	103/16, 179Se			
	o-Methylacetophenone	179	60 t	10 ¹⁸⁵	105/20, 203Se			
		184	35	10 ²⁷⁴	95/15, 210Se			
		189	60	10 <b>41.3</b>	108/25			
		189	85	10 412	94/13, 206Se			
	<i>m</i> -Methyl acetophenone	189	83	10 <b>402</b>	108/19, 203Se			
	p-Methylacetophenone	178	88	10 ²⁸	108/18, 1.5348, 88-Ox			
		178	89	10 ⁶	93/7, 87-Ox*			
		178	93	1012	227/764			
		179	50 t	10 ¹⁸⁵	109/12, 197Se			
		189	84	10 ⁴⁰²	138/13, 198Se			
	1-Indanone (a-hydrin-	178	55	1074	(41)			
	done)	178	84	1076	120/13, 146-Ox*			
		178	93	10 77	(38)			
			60	10 78	126/17, (41), 233Se*			
	2-Indanon e	201	75	10 76	(57), 153-Ox			
C 10	Phenyl <i>n</i> -propyl ketone	178	65	10 ³⁶	115/17			
		187	82	10 ³⁵⁴	123/20, 1.5203			
	Phenyl isopropyl ketone	179	75	10186				
		184	81	10262	102/15, 181Se•			
		188	72†	10392	217/760, 57-Ox			
	Ethyl benzyl ketone	195	68	10 ⁶⁷⁹	102/10			
	Ben zylacetone	184	35†	10 ²⁷⁶	110/7, 142Se			
		184	88	10 ²⁷⁵	124/16			
		184	97	10 ²⁵³				
		196	63	10 476	235, 87-Ox*			
		196	67	10 477	236/748, 142Se			
		196	96	10 ⁴⁶⁸	133/15			
	3-Phenyl-2-butanone	198	74	10 ⁴⁹⁹	107/22, 1.5092			
		187	28	10 ³³⁸	78/1.5, 1.5088 ²⁵ , 158Se			

For explanations and symbols see pp. xi-xii.

.

#### KETONES

ſ

•

358

Ch. 10

### TABLE 32 (continued)

C _n	Compound	Method	Yi <b>el</b> d (%)	Chapter ^{ref.}	B.p./mm., $n_{D}^{l}$ , (M.p.), Deriv.
		Aromatic	Ketor	es (continue	rd)
C 10	p-Methylpropiophenone	178	86	106	106/8
	o-Ethylacetophenone	186	74	10 ³³⁷	108/18, 180Se
		187	62	10 ³³⁶	118/29, 1.5249
	<i>m</i> -Ethylacetophenone	183	50	10 ²³⁶	116/14, 1.5232 ²⁵
	p-Ethylacetophenone	178	98	104	117/13, 1.5275 ²⁵
		186	38†	10 ³³⁶	125/20, 1.5298
	2,4-Dimethylaceto-	178	48	10 ⁸	97/4, 1.5381, 234Se*
	phenone	178	54	107	113/18, 64-Ox*
		178	74	10 ⁸	94/5, 1.5340, 187Se*
	2,5-Dimethylaceto-	178	68	10 ⁸	94/8, 1.5291, 169Se*
	phenone	186	6 <b>9</b>	10 ³³⁶	127/31, 1.5306
	3,4-Dimethylaceto-	186	58	10 ³³⁶	132/19, 1.5400
•	3.5-Dimethylaceto-	187	63	10 ³³⁶	129/22, 1,5276 ²⁵
	phenone	-07	0,5		
	a-Tetralone	178	91	1017	170/49
		178	91†	1079	107/2. 102-Ox
		178	92	1024	123/8. 217Se
		183	56	10241	124/9
	β-Tetralone	181	42	10 ⁴⁸⁵	$121-132/8$ , $1.5555^{25}$ , (18)
		197	40	10483	194Se
		197	56	10 486	131/11, 88-Ox*
C 11	Phenyl <i>n</i> -butyl ketone	179	93	10 ¹⁸⁶	
		I87	83	10 ³⁵⁴	141/24, 1.5146, 166 <b>Se*</b>
		195	50	10 ⁶⁷⁹	107/10
	3-Phenyl-2-pentanone	198	55	10 <b>499</b>	110/18, 1.5051, 191Se
	4 Phenyl-2 pentanone	178	39	10 ⁵³⁰	115/13, 1.5124, 137Se
	5-Phenyl-2-pentanone	184	25†	10 ²⁷⁶	122/6, 130Se
	Phenyl isobutyl ketone	178	62	10 ³⁶	235, 210Se*
	Phenyl <i>s</i> -butyl keton e	184	69	10 ²⁶²	109/10
	Phenyl <i>t</i> -butyl ketone	179	64	10 ¹⁸⁷	108/16, 150Se*
		189	67	10 417	84/3, 1.5102, 195Dn
		198	77	10 ¹⁸⁷	104/14, 166-Ox
	5-Phenyl-3-pentanone	196	82	10 ⁴⁷⁹	244/760, 1.5125, 80Se
	Pi valophen on e	187	82	10 ^{3 ss}	224/750, 1.5082
	3-Methyl-3-phenyl-2-	187	61	10 ^{3 58}	77/15, 1.5078 ²⁵ , 186Se
	butanone	198	50	10499	99/12, 1.5083, 186Se
	3-Methyl-4-phenyl-2-		65	10 ⁶⁸¹	106/9, 1.5065 ¹⁸ , 114Se
	butanone	196	83	10 ⁴⁷⁹	130/17, 1.5090 ¹⁹ , 112Se
	2,4,5-Trimethylaceto-	178	75	10 37	124/5, 204Se*
	ph en on e	178	80	107	123/10, 86-Ox*
	2,4,6-Trimethylaceto-	178	72	107	123/18
	phenone	178	83	10 <b>29</b>	102/1
	2-Phenylcyclopentanone	192	50	10446	135-140/9, (37), 214Se

#### TABLE 32. MONOKETONES

#### TABLE 32 (continued)

C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Aromatic Ketones (continued)							
C 11	2-Methyl-1-tetral one	178	71	1082	138/16, 1.5538 ²⁵			
••		178	92	10 ⁸¹	80/1, 1.5447, 195Se			
		184	95	10 ⁸⁰	116/2.5, 205Se			
	3-Methyl-1-tetralone	178	73†	10 ⁸⁴	96/0.3, 123-Ox			
		178	86	10 ⁸³	136/14, 242Dn			
	4-Methyl-1-tetralone	178	74	10 ⁸⁰	111/1, 211Se			
	7-Methyl-1-tetral on e	178	89†	10 ⁸⁴	109/1.5-2, (33)			
C12	Phenyl neopentyl ketone	178	87	10 ⁴⁷⁸	116/11, 1.5078, 218Se, 114-Ox			
•-	m-Propyl propi ophenone	187	82	10 ³⁶⁰	145/20, 128Se			
	Mesitylacetone	185	83†	10312	(60), 205Se			
		187	50	10 3 59	130/10, (60), 197Se			
	p-n-Butylacetophenone	178	78	10 ³⁸	141/14, 185Se			
	p-Isobutylacetophenone	178	38	10 ³⁸	135/16			
	p-s-Butylacetophenone	178	74	10 ³⁹	135/11, 1.5195			
	<i>p-t</i> -Butylacetophenone	178	83	104	138/16, 1.519525			
	2-Methyl-5-isopropylace- tophenone	178	55	10 <b>°</b>	125/12			
	Acetodurene	178	80	107	131/10			
		178	86	10 40	(73)			
	Acetoisodurene	178	81	107	137/16			
	Acetoprehnitene	178	70	107	124/8			
	2-Phenylcyclohexanone	179	80	10 ¹⁷⁵	160/15, (63), 190Se			
		192	60	10 ⁴⁴³	155/13, (60), 139Dn			
		201	80	10 532	150/9, (59)			
	4-Phenylcyclohexanone	179	40	10 ¹⁸⁸	(78), 212Se			
	Methyl a-naphthyl ketone	178	35	10 <b>42</b>	151/7, 237Se*			
		178	93	10 ³⁰	163/15, (9.0)			
		187	52	10 ³⁴⁶	150/8, 1.6257, 116Pi*			
	Methyl $\beta$ -naphthyl ketone	178	40	10 <b>43</b>	(53), 82Pi			
	6-Acetyltetralin	178	74	10 <b>*</b>	115/2			
		178	93	104	121/2.0, 1.5591 ²⁵			
		178	60	10 ²⁵	156/10, 1.5593 ²⁹ , 234Se			
	1, 1-Dimethyl-2-tetralone	198	80	10 ⁴⁹⁶	96/0.5, 1.538, 204Se			
	7-Acenaphthenone	179	65	10 ¹⁸⁹	(121)			
		••••	45	10 ⁵³¹	(121)			
C13	Benzylpinacolone	196	75	10 ⁴⁷⁸	261/746, 1.4972, 158Se			
	p-n-Amylacetophenone	178	73	10 ³⁸	159/17			
	p-Isoamylacetophenone	178	73	10 ³⁸	153/16			
	p-s-Amylacetophenone	178	58	10 ³⁹	145/11, 1.5150			
	p-t-Amylacetophenone	178	59	10 ³⁸	146/13			
	Acetopen tame thy l-	178	80	107	145/8, (84)			
	benzene							
	Ben zoph en on e	178	76	10 44	(49), 167Se*			
		178	90	10 ²	(48), 144-Ox*			
		183	87	10 577	140-Ox			

### . 360

the second second

#### **KETONES**

Ch. 10

TABLE 32 (continued)

C _n	Compound	Me thod	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., $n_D^t$ , (M.p.), Deriv.
	ŀ	Aromatic I	Ketone	s (continued)	)
C 13	Benzophenone (con-	186	87	10329	(48)
	tinued)	189	57	10 403	172/19
		222	89	10 <b>460</b>	190/15, (48)
	Ethyl α-naphthyl ketone	187	37	10 ³⁴⁶	170/11, 1.6109, 58-Ox*
		187	89	10 ⁶⁸³	146/1, <b>7</b> 9Pi
	6- Propionyl tetralin	178	68	10 ²⁵	163/11, 1.5508 ²⁹ , 209Se
	Fluorenone	183	70	10 242	(83.5)
		186	82	10242	(84), 195-Ox*
		222	90	10 462	(83.5)
C14	Phenyl benzyl ketone	178	83	10 ¹	160/5, (56), 148Se*
	(desoxybenzoin)	190	77	10 429	(57), 98-Ox
		201	88	10 ⁵¹⁹	(58)
	p-Methylbenzophenone	178	55	10**	185/17, 122Se*
	4 Phenylhe xahydroace- tophenone	178	60	10 <b>48</b>	121/1-2, 191Se
	p-Cyclohexylaceto-	178	91	10 4	129/1.5, (69)
	phenone				
	2- Acetyl biphenyl	188	48†	10391	105/1, 197Se
	3-Acetyl biphenyl	179	81	1047	$138/1, 1.6140^{28}$
		188	46†	10 391	151/1, 223Se
	4-Acetyl biphen yl	178	70	1047	150/2, (121)
		178	80	10 48	(121)
		178	90	1018	(121)
	1-Acetoacenaph then e	178	45	10 ** /	(105)
	Anthrone	178	28	10 30	(154)
		••••	83	10	(153)
C 15	Benzylacetophenone	196	95	10 ⁶⁸⁸	(73), 144Se*
	Dibenzyl ketone	186	41	10 ³³⁰	320, (30), 146Se*
		186	85	10 ³³⁸	187/15
		187	11	10 ²¹⁰	(35)
	a,a-Diphenylacetone	••••	57†	10 ⁶⁸⁰	(61)
	Di-o-tolyl ketone	189	40	10 ⁶⁸⁷	(67), 105-Ox
	o-Ethylbenzophenone	178	83†	10 ⁵²	165/18
	p-Ethylbenzophenone	178	80	10 ^{\$}	144/0.2, 315/730
	p, p'-Dimethylben zo-	178	55	10 ²⁷	(95), 140Se
	Fthyl A high en ylyl	179	70	1018	(89)
	ketone	1/0	19	10	(89)
	2-Acetylfluorene	178	63	1031	197/4 (130)
	£	178	81	1019	(129)
	9-Acetyl fluorene	110	60	10199	(75,5) 139Ph
	/		60	10 ⁵³	(75)
C16	p-n-Propylben zo-	178	67	10 ⁵	114/0.05
	phenone				

#### TABLE 32. MONOKETONES

#### TABLE 32 (continued)

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	A	romatic	Ketone	s (continued	0
C 16	p-Isopropylbenzo-	178	55	10 **	197/16
	phenone	187	40	10 ³⁶¹	118/0.04
	Mesityl phenyl ketone	183	83	10 ⁵⁶⁸	(137), 232Dn
	1-Ac etyl phenanthrene	187	85	10 ³⁴⁷	(113)
	2-Acetylphenanthrene	178	15	10 ²⁰	(143), 260Se
		178	53†	10 ²²	(143)
	3- Ac etyl phenanthrene	178	64	10 <b>20</b>	(72), 230Se
	9- Ac etylph enanthren e	184	83†	10277	(74), 201Se
		187	59	10 ³⁴⁷	170/1, (74)
	9-Acetylanthracene	178	60	10 ³²	(76)
C 17	p-n-Butylbenzophenone	178	69	10 ^{\$}	164/0.65
C ₁₇	p-s-Butylbenzophenone	178	88	10 ³⁹	188/9, 1.5760
		187	50	10 <b>361</b>	139/0.04
	p-t-Butylbenzophenone	178	74	10 ⁶	205/15, (37.5)
	Benzoyli soduren e	178	78	10 54	164/4, (61)
	Phenyl a-naphthyl ketone	178	52	10 ²⁶	169/1, (75), 161-Ox
		178	86	10 ³⁰	225/15, (73)
	2-Propionylphenan-	178	23	1031	(105), 107Pi
	threne	178	451	1022	(104)
		187	77	1021	(105), 107Pi
	3-Propionylphenan-	178	23	10 ²¹	(57), 113Pi
	threne	187	22	10 21	(57), 113Pi
	9-Propionylphenan-	187	86	10 ²¹	(57), 107Pi
	9-Propionylanthracene	178	11	10 ³³	(75)
<b>c</b>	Laurophenone	187	90	10362	(44), 67-Ox
⊂ <u>18</u>	the st Amylben zonhenone	178	60	1039	190/5 1 5672
	2 2 Diphenyloyclohem	201	00	10 516	(99)
	anone	201	70	10	())/
C 19	Dimesityl ketone	189	56	10 428	(137)
	Ph <b>en</b> yl 3-biph <b>e</b> nylyl	187	46	10 ⁶⁸⁶	(79)
	ketone				
	Phenyl 4-biphenylyl	178	75	10 ¹⁸	(106)
	1-Ben zovi acen aph thene	190	95	1023	(92)
	3-Benzovlacenaphthene	178	70	1024	(99)
c.	<i>y Dendoyraeenaphenene</i>	1/0			(///
⊂ <u>21</u>	8. 8-Diphenvlpropie-	178	85	10 <b>56</b>	(92), 13 <b>3-</b> 0x
	phenone	191	90	10***	(96)
	Di-a-naphthyl ketone	187	75	10 351	(100), 200-Ox*
	l-Benzovlphenanthrene	178	8	10 58	(149)
	2-Benzovlphenanthrene	187	85	10 58	(118)
	3-Benzovlphenanthrene	178	20	1058	(112)
		187	60	10 ⁵⁸	(112)

#### **KETONES**

Ch. 10

#### TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aromatic Ketones (continued)								
C 21	9-Benzoylphenanthrene	187	65	10 346	(90)				
	9-Anthraphenone	178	65	10 ⁵⁷	(148)				
	2,3-Diphenyl-1-indenone	19	71	2 ⁷⁸	238/6, (151)				
C 🛪	Stearoylbenzene	178	65	10 ⁵	(65)				
C 26	Phenyl triphenylmethyl	201	96	10 51 5	(180)				
	ketone				· /				
C 27	sym-Tetraphenylacetone	189	. 52	10 422	(134)				
		189	36	10 ²⁷⁸					
			39	10 ²⁷⁸	(134)				
С 33	Pentaphenylacetone	189	70	10 432	(181)				
		Hetero	cyclic	Ketones					
C4	3-Thi oph an one	560	22	39 ⁷	85/24, 192Se				
C6	2-Acetylfuran	178	66	10 ⁶⁰	48/5, (32), 150Se*				
		178	48	10 ⁶⁵	90/43, 1.5015 ³⁰ , (32)				
		178	77	1064	48/5				
		178	76	10 ³⁹	48/5, 220Dn				
		189	28	10 431	58/3				
		199	75	10526	169-173, 148Se				
	2-Acetylthiophene	178	70	1068	88/8, 1.5666				
		178	83	10**	91/9, 1.566				
		178	79	10 •••	90/10, (10.5), 1.5662				
		178	73	10	81/7				
		178	86	1000	/8/4, 1.5666				
Cγ	a-Furylacetone	195	40	10 ⁶⁷⁹	180				
	Ethyl 2-furyl ketone	178	52	1067	77/17, (28), 189Se				
		178	81	1064	63/6				
		189	61	10 40	82/15, 189Se				
		199	100	10 530	183, (30), 189Se				
	2-Acetyl-5-methylfuran	178	42	10**	73/8, 191Se				
	a-Ihienylacetone	219	87	10367	106/12, 1.5366 ¹⁴ , 195Se				
	Ethyl 2-thienyl ketone	178	79	10**	89/6				
	thiophene	178	91	10~	83/2, 1.5622, 217Se				
	Methyl 2-pyridyl ketone	184	50	10279	190, 121-Ox*				
	Methyl 3-pyridyl ketone	184	81	10 ²⁷⁹	218, 137Ph*				
		184	96	10 ²⁸⁰	92/5, (14), 177HCl				
		186	36	10 ³⁹⁹	108/23				
		187	50	10 ³⁶⁴	220, 11 <b>3-</b> Ox				
	Methyl 4-pyridyl ketone	184	80	10 ²⁷⁹	212, 142-Ox*				
C۵	n-Propyl 2-furyl kewne	178	93	10 ⁶⁴	78/7				
	1-(a-Furyl)-2-butanone	195	70	10 ⁶⁷⁹	76/12, 1.468025				
	1-(a-Tetrahydrofuryl)- 3-	196	73	10 ⁶⁸³	81/2, 1.4459 ¹⁹				
	butanone								

#### TABLE 33. DIKETONES

#### TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Не	terocycli	c Keto	nes (continu	ed)
<b>C6</b>	5-Methyl-2-propiofuran	199	100	10 526	96/14, 164Se
	n-Propyl 2-thienyl ketone	178	89	10 ⁶⁴	96/4
	<i>n</i> -Propyl 3-pyridyl ketone	189	30	10 ³⁶⁵	98/3, 1.5128, 104Pi
	3-Pyridylacetone	186	40	10 ³⁴⁰	123/1, 185Se
C,	2-Furyl 2-thienyl ketone	178	66	10 ⁶⁹	136/3, 1.6694 ²⁴
	2-Furyl 2-pyrryl ketone	189	42	10 ⁶⁹	144/1.5, (70)
	n-Propyl 3-pyridyl ketone	187	40	10 ³⁶⁵	98/3, 1.5136, 130Ph
	2- <b>n-</b> Butyrylpyridine	195	81	10 ⁵³⁵	217, 1.5078, 75Pi
Сю	Methyl 2-benzofuryl	178	37	10 71	119/5, (72), 207Se
	ketone	570	80	39 ⁶⁰	136/11, (76), 154Ph
	3-Acetylthianaphthene	178	70	1070	137/3, 250Se
C11	2-Benzoyl furan	178	70	10 ⁶⁶	150/3, (44), 122-Ox
	Phenyl 2-thienyl ketone	178	90	10 ⁶³	209/40, (56), 93-Ox
	2-Acetylquinoline	201	62	10 ⁵¹⁸	(46), 54Ph
	3-acetylquinoline	184	95	10311	(98.5)
	8-Acetylquinoline	184	52	10 ²⁸¹	116/0.7, (43.5), 253Dn
с.,	2-Benzoylpyridine	183	86	10 ²⁴⁴	133/2, 1.6056, 199Dn
C 13	2-Phenacylpyridine	226	57	10 ⁵³⁴	150-160/4, (54)
С,,	2-Acetyldibenzofuran	178	57	10 ⁷³	2 20/18
-4	2-Acetyldibenzothio- phene	178	25	1072	(112), 235Se

#### TABLE 33. DIKETONES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliph	atic Di	ketones	
C,	Acetylacetone	203	45	10547	136
•		203	54	10 5 44	141/758
		203	85	10 ⁵⁴⁶	136, 150-Ox*
C.	Dipropionyl	179	70	10191	35/10, 185-Ox*
- 0	Propionylacetone	203	35	10 <b>500</b>	157
		203	46	10 ⁵⁴²	157/754, 199Cu
		203	60	10 ⁵⁴¹	158, 198Cu
	Acetonylacetone	229	90	10 ⁵⁹¹	79/15, 89/25
	Methyldiacetylmethane	203	32	10542	79/30
°C -	Dipropionvlmethane	203	51	10 ⁵⁴⁶	80/30
- 4		203	57	10544	80/30, 210Cu

For explanations and symbols see pp. xi-xii.

#### KETONES

Ch. 10

		TABLE	33 (co	ntinued)	-
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Ali	phatic Di	etone	s (continued,	)
C7	n-Butyrylacetone	203	45	10 500	90/38
		203	48	10 542	73/20, 165Cu
	Isobutyrylacetone	203	30	10 ⁵⁴¹	67/20, 172Cu
		203	41	10 ⁵⁴⁵	64/19
		203	54	10 <b>500</b>	164
	3-Methyl-2,4-hexane-	203	31	10 <b>54</b> 2	91/30, 177Cu
	dione	203	45	10 ⁵⁴¹	183, 177Cu
		203	60	10 ⁵⁴⁵	184
	3-Methyl-2,5-hexane- dione	184	83	10 ²⁸²	71/10, 1.4260, 220Se
	Diacetylethylmethane	198	30	10 ⁵⁰⁰	178/740
C,	<i>n</i> -Valerylacetone	203	62	10 <b>500</b>	81/17
	Propionyl-n-butyryl- methane	203	70	10 ***	86/20, 158Cu
	3-Methyl-2,4-heptanedione	203	44	10 542	96/20, 163Cu
		20.3	47	10500	100/45
	Isovalervlacetone	203	64	10 500	77/17
	Pivalovlacetone	203	43	10 544	71/20, 192Cn
	Diisobutyryl	1.81	27	10228	148. 172-Ox*
	Isopropyl diacetyl-	198	35	10 ^{so}	183/740
	шешине				
С,	Caproylacetone	203	54	1054	98/11, 1.4222**
		203	61	1054	105/20, 138Cu
	Di-n-butyrylmethane	203	76	10544	102/20, 157Cu
	Methylpropionylbutytyl- methane	203	46	10 •**	108/20, 152Cu
	Propionyl-isoval eryl- methane	203	75	10 <b>545</b>	93/19
	Diisobutyrylmethane	203	28	10 ⁸⁴⁶	63/3
	<i>n</i> -Butyldiacetylmethane	198	38	10 ⁵⁰	94/10
		203	53	10 ⁸⁴²	106/20
		203	67	10 ⁶⁷³	106/20
	Diacetyl diethylmethane	198	32	10 ⁵⁰¹	100/10
C 10	Dipivaloyl	179	36	10 ¹⁹⁶	73/24
		179	50	10 ²⁰	62/14, 1.4144
C 11	2,5-Undecandione	229	<b>8</b> 6	10 590	(33)
	Diisovalerylmethane	203	76	10 3 40	116/20, 1.4565**
		Alicy	clic Di	ketones	
C _s	Cyclopentan-1,2-dione	184	67	10 ⁵⁴¹	97/20
C,	4 Methyl-cyclopentan- 1.2-dione	184	65	10 562	98/17
	1.2-Cyclohexanedione	183	30	10 <b>569</b>	97/25, 188-Ox

#### TABLE 33. DIKETONES

#### TABLE 33 (continued)

C _n	Compound	Method	Yield (%)	Chaptertef.	B.p./mm., <b>n</b> ^t _D , (M.p.), Deriv.
	Ali	cyclic Dil	ketones	(continued)	
C.	1,3-Cyclohexanedione	197	95	10 441	(104), 156-Ox*
	1,4-Cyclohexanedione	184	85	10 ⁵⁶⁷	132/20, (79), 188-Ox•
C,	1,2-Cycloheptanedione	183	90	10 ⁵⁷⁰	109/17, 182-Ox
C ₈	Tetramethyl-1,3-cyclo- butan edione		38	10 ⁵⁸⁵	161, (116)
	2-Acetylcyclohexanone	203	35	1054	115/20
		203	35	10 <b>542</b>	97/10
		203	56	10 ⁵⁴⁸	101/11
	5,5-Dimethyl-1,3-cyclo- hexanedione	184	85	10 ⁵⁸⁴	(148), 176-O <b>x</b> ●
C,	5-Isopropyl-1,3-cyclo- hexanedione	184	80	10 ⁵⁸⁸	(62)
	2-Propionylcyclohexanone	203	29	10 ⁵⁴⁵	125/20
		203	35	10 542	125/20, 185Cu
C 10	2- Ethyl- <b>4-n</b> -propyl-1,3- cy- clopentanedione		32	10 ⁵⁸⁶	176/1, (120)
		Aroma	tic Dik	etones	
C.	Acetylbenzovl	183	20	10 576	128/20, 232Se*
	•	183	60	10 567	115/15
		195	70	10 452	116/20, 240-Ox*
	Ninhydrin (triketohy-	183	35	10 ⁵⁷¹	(243), 201-Ox
	drindene)				
C 10	1-Phenyl-1,2-butanedione	183	35	10 ⁵⁷⁶	132/20
	Benzoylacetone	178	73	10 ⁹⁰	141/15, (59)
		203	50	10 ⁵⁴²	141/18
		203	66	10 ⁵⁴⁵	(61)
		203	68	10 ⁶⁷³	146/20
		203	70	10 <b>500</b>	136/16, (60)
		203	83	10 ⁵⁴³	(60)
	o-Diacetylbenzene	183	71	10 ²⁴³	147/16, (38.5)
	p-Diacetylbenzene	183	76	104	130/3, (114)
		184	15	10 ²⁸³	(114), 240-Ox*
C11	w-Propionylace-	203	30	10 ⁵⁴²	152/10, 153Cu
	tophenone	203	55	10 54	127/5, 149Cu
		203	61	10 ⁵⁵⁰	122/5, 1.5837, 151Cu
	3-Phenyl-2, 4-pentane- dione	203	41	10 ⁵⁴²	134/20, (60), 224Cu
C 12	1,3,5-Triacetylbenzene		51	10 ⁵⁶³	(161)
C 14	Benzil	179	<b>8</b> 6	10 ¹⁹⁰	(95), 244S <b>e</b> *
		179	95	10199	(95), 225Ph*
		179	100	10194	(95)
		183	93	10 ⁵⁶⁶	

### **KETONES**

Ch. 10

C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Аг	omatic D	liketon	es (continue	d)
C 15	Dibenzoylmethane	203	71	10 552	(78)
		202	80	10 ⁵⁵¹	(78)
	Diphenyl triketone	222	59 t	10 461	(70)
	4-Methylbenzil	183	75	10 ⁸⁶⁶	221/15
	Mesityl t-butyl ketone	179	83	10 ¹⁹⁷	118/2, 1.5068, 139-Ox•
C 16	1,2-Dibenzoylethane	196	76	10 ⁴⁸⁰	(147), 204-Ox*
	p-Tolil	179	47	10 ¹⁹⁴	(102), 225-Ox•
	p,p'-Diacetyl biph enyl	178	45	10 ¹⁸	(191)
C 18	1,4-Dibenzoylbutane	178	81	10 ⁸⁹	(107)
		Heteroc	yclic D	Niketones	
C ₈	Acetyl-2-furoylmethane	203	43	10 553	110/10, 222Cu
		203	45	10 ⁵⁰⁰	110/10
	Tetrahydrofuroylacetone	203	60	10 <b>500</b>	97/8
	Acetyl-2-thenoylmethane	203	81	10 ⁵⁸⁴	131/8, 230Cu
C,	Propionyl- 2- thenoylme thane	203	62	10 <b>554</b>	126/4, 194Cu
	Nicotinylacetylmethane	203	63	10 ⁶⁹⁰	135/6, (83.5)
C 10	Furil	179	63	10 ²⁰⁰	(166)
		179	91	10194	(165)
C 11	Di-2-thenoylmethane	203	64	10 ⁵⁵⁴	(100), 263Cu
	2-Furoyl-2-thenoyl- methane	203	75	10 ⁵⁶³	195/6, (55.5), 274Cu
С 13	Benzoyl-2-furoylmethane	203	55	10 <b>500</b>	165/3, (68)
		203	87	10 ⁵⁵³	169/3, 248Cu
	Benzoyl-2-thenoylmethane	203	58	10554	201/4, (78), 278Cu

For explanations and symbols see pp. xi-xii.

Cn	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphau	c Olefi	nic Ketones	· · · · · · · · · · · · · · · · · · ·
C₄	Methyl vinyl ketone	26	81 †	2 ⁴⁷⁸	81/734
		36	15†	270	81, 1.4095 ²²
			15	10 ⁶⁶⁵	81, 1.4095 ²² , 140Se*
		181	63	10 <b>230</b>	
C,	Methyl propenyl ketone	36	42	276	119-125
-	Ethyl vinyl ketone	178	22	10 ⁹⁵	102/740, 1.4192, 129Dn
	Methyl isopropenyl	24	98	2 ⁴⁶⁸	38/85, 1.4235, 173Se, 181Dn
	ketone	26	92	2 478	97/734

#### TABLE 34. OLEFINIC KETONES

#### TABLE 34. OLEFINIC KETONES

TABLE 34 (continued)	(continued)
----------------------	-------------

C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^r ef.	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic Olef	inic Ke	tones (conti	nued)
C ₅	Methyl isopropenyl ketone (continued)	36 200	80 91	2 ²⁹¹ 10 ⁹⁸	58/200, 1.4232
C,	5-H <b>exen-2-</b> on <b>e-</b> (allyl-	184	48†	10 ²⁸⁴	132/760, 1.417027
	acetone)	205	31	10 ⁵⁹⁵	128/ 1.4174 ²⁵ , 108Dn, 102Se
		188	42	10 ⁵⁹⁰	
	4-Hexen-3-one	187	25	10 <b>371</b>	139, 1.4388, 157Se
	1,2-Diacetylethylene		15	2 521	90/15, (77)
	2-Methyl-1-penten-3-one	20	65	2 ¹⁴⁹	119/751, 1.4270 ²⁴ , 161Se
	3-Me thyl-3-pen ten-2-one	36	87	2 ⁴⁸⁷	97/200, 1.4489
		36	90	2 ⁿ	140
	4-Methyl-3-penten-2-one	36	80	2 ⁶⁷	128
	(mesityl oxide)	36	100	2 ⁶⁹	129
C,	trans-3-Hepten-2-one	36	33	272	60/16, 1.4421, 125Se
	5-Hepten-2-one (crotyl-	184	81†	10 ²⁸⁴	154/770, 1.4280 ²⁵
	acetone)	205	80	10 ⁵⁹⁵	153, 1.4272 ²⁵ , 105Se
	3-Methyl-1-hexen-5-one	205	37	10 ⁵⁹⁵	138, 1.4197 ²⁵ , 112Se
	5-Methyl-4-hexen-3-one	20	30	2 ¹⁵⁰	148/760, 1.4496 ¹⁵ , 163Se
		178	30 t	10 ¹⁰¹	148/760, 163Se
	5-Methyl-5-hexen-2-one	184	6 <b>9</b>	10 ²⁸⁴	145-150/760, 1.4278 ²⁷ , 137Se
	(methallylacetone)	205	26	10 ⁵⁹⁵	149, 1.4285 ²⁸ , 137Se
	3,4-Dimethyl-3-penten- 2-one	178	54†	10 <b>101</b>	147, 200Se
	3,4-Dimethyl-3-penten- 2-one	20	54	2 ¹⁵⁰	147, 1.4506 ¹⁴ , 200Se
	3,4-Dimethyl-4-penten- 2-one				144, 114Se
	3,4-Dimethyl-4-penten- 2-one	178	54†	10 ¹⁰¹	144, 114Se
	4,4-Dimethyl-1-penten- 3-one	20	60	2149	66/105, 1.4219 ¹⁴
C.	3-Methyl-3-hepten-2-one	36	93	2 71	175, 164Se
	3-Methyl-3-hepten-5-one	36	72	2 31 9	82-86/42, 1.4488 ²⁵ , 114Se
	4-Methyl-6-hepten-3-one	198	56	10 205	156, 80Dn
	2-Methyl-2,5-heptadien- 4-one	194	30	10 ⁴⁴⁹	72/16, 1.4922 ²¹ , 141Dn
	3-Ethyl-5-hexen-2-one	184	48	10 286	152, 1.4260 ²⁵ , 53Dn
	2-Ethyl-1-hexen-3-one	20	55	2 ¹⁴⁹	158/742, 1.4408 ¹⁶ , 119Se
	3,4-Dimethyl-3-hexen- 2-one	36		2322	158, 1.4476 ¹⁵ , 142Se
	5,5-Dimethyl-3-hexen- 2-one	36	40	2 2 92	79/40, 1. <b>4430,</b> 178 <b>Se</b>
	4,5-Dimethyl-4-hexen- 3-one	178	57†	10101	166/750, 209Se
	4,5-Dimethyl-5-hexen- 3-one	178	57†	10 ¹⁰¹	162/750, 110Se

<b>3</b> 68		Ch. 10			
		TABL	E 34 (a	continued)	
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic Ol <i>e</i> fi	nic Ke	tones (conti	nued)
C,	7-Methyl-5-octen-4-one	36	45	274	86/25, 1.4413
	5-Ethyl-4-hepten-3-one	189	74	10 ⁴⁰⁶	179/740, 105Se
	2, 3- Dimethyl-2-hepten- 6-one	184	86	10 ²⁸⁵	76/13, 163Se
	3-Propyl-3-hexen-2-one	19	68	2 ⁷⁵	72/9, 142Se
	2,4,5-Trimethyl-4- hexen-3-one	178	40 t	10 ¹⁰¹	174/755
		Alicyclic	: Olefi	nic Ketones	
C.	2-Methyl-2-cyclopen-	179	67	10202	53/12, 220Se
•	tenone	195	54	10 ⁵⁹⁸	161/760, 1.4771, 127-Ox
	2-Cyclohexenone	19	35	2 ⁷⁹	68/22, 172Se, 163Dn
		183	38	10 441	67/25, 1.4879, 168Se, 117Dn
C,	1-Acetyl-1-cyclopen-	178	50†	10102	74/12, 211Se
	2, 3-Dimethyl-2-cyclopen- tenone	206	30	10 ⁵⁹⁶	92/25, 1.4830, 250Se
	3-Methyl-2-cyclohexen-	183	20	10 441	78/14, 1.4938, 201Se, 176Dn
	1-one	202	34	10 ⁴⁷⁵	40/0.8, 1.4945, 178Dn, 199Se
C,	1-Cyclopentenylacetone	184	90	10 ²⁶⁷	67/12, 150Se
-	a-Propylidenecyclopen- tanone	36	65	2**	80/10, 225Se
	2,2,3-Trimethyl-4-cyclo- pentenone	206	6	10 ⁵⁹⁶	66/19, 1.4601, 190Se
	3-Ethyl-2-cyclohexenone	202	75	10 ⁴⁷⁵	57/0.9, 1.4913, 160Dn, 186Se
	3,5-Dimethyl-2-cyclo- hexen-1-one	36	55	2 ⁴⁰⁹	85/9
	1-Ac etyl-1-cycloh exen e	178	50 t	10 ¹⁰⁸	93/14
		178	54	10 ⁹⁷	69/5,1.4883 ²⁵ ,220Se, 59-Ox
		178	62†	10 92	200, 221Se
		204	70	10 ³⁹⁴	88/22, 1.4892
ς,	3-Methyl-2- <i>n</i> -propyl-1- cyclopentenone	<b>20</b> 6	32	10 ³⁹⁶	58/2, 1.4778, 210Se
	1-Propionyl-1-cyclo-	178	36†	10 ¹⁰⁴	102/14, 189Se, 78-Ox
	hexene	178	40†	10 ⁹³	90/10, 195Se
	2-Allylcyclohexanone	184	66	10 206	79/11, 1.4662 ²⁵ , 70-Ox
		198	62	10 ⁵⁰³	92/17
	3-n-Propyl-2-cyclohex- en on e	202	75	10 478	60/0.4, 1.4876 ²⁵ , 156Dn, 175Se
	3-Isopropyl-2-cyclohex- enone	202	12	10 ⁴⁷⁵	60/0.3, 1.4842, 155Dn, 179Se
	3- Methyl-5-ethyl-2-cyclo- hexen-1-one	36	66	2 ⁴⁰⁹	100/9, 1.4880*

#### TABLE 34 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alicy	clic Olefi	nic Ke	tones (conti	nued)
C 10	2,2-Dimethyl-1-acetyl-1- cyclohexene	204	56	10 ⁴⁹⁰	118/49, 1.4810 ²⁸ , 201Se
C 12	2-Cyclohe <b>xy</b> lidenecyclo- he <b>xan</b> one	36	70	2 ³²⁰	150/22, 1.5084 ²⁸ , 188Se
		Aromati	c Ol <b>e</b> fi	nic Ketones	
C,	Phenyl vinyl ketone	20	78	2146	
C 10	Ph <b>enyl</b> propenyl ketone	178	61	10 ⁹⁶	95/2
	Benzalacetone	36	78	2 ²⁹⁴	128/8, (42)
	a-Methylacrylophenone	26	70	2 ²⁶⁸	60/3, 1.5354
C11	Isopropylideneace-	178	35	10 580	106/5, 1.5579 ²³
	tophenone	178	40	10 100	
	-	194	40	10 ***	121/4, 1.5598 ¹⁹ , 168 <i>p</i> N
C 12	1-Phenyl-1-hexen-5-one	205	88	10 ⁵⁹⁶	99/0.30, 1.5458 ²⁸ , 132Se
	1-Phenyl-4-hexen-l-one	205	83	10 ⁵⁹⁵	97/1, 1.5270 ²⁸ , 130Se
	3-Phenyl-1-hexen-5-one	205	74	10 ⁵⁹⁵	86/1, 1.5193 ²⁵ , 103Dn
	Phenyl 2-methyl-3- butenyl keton e	<b>20</b> 5	76	10 ⁵⁹⁵	100/2.1, 1.5223 ²⁸ , 177Se
	o-Methylstyrylethyl ketone	36	26	2 ³⁰²	152/14, 178Se
C.	Benzalpinacolone	36	93	2 296	146/10. (43)
	1-Benzovl-1-cvclohexene	178	401	1092	147/8
c	t Nachal Januara	26	76	- 197	
C14	I-Naphthalacetone	30	15	2	1/0/1, 1.6665
	2-Naphthalacetone	30	09	2	(104)
C 15	Benzalacetophenone (chalcone)	36	82	2 ²⁹⁵	(55-57)
C16	<i>trans</i> -Dibenzoylethylene	178	83	10 <b>°1</b>	(110), 211-Ox*
	2, 4- Diphenyl-2-buten- 4-one	36	82	2 <b>321</b>	139/1, 1.6273 ²⁸ , 135-Ox
C 17	Dibenzalacetone	36	94	2 298	(111)
		Heterocyc	lic Ol	efinic Keton	:8
C.	Furfuralacetone	36	66	2 307	116/10, (38)
C 11	Furfuralac etofuran	36	89	2 309	(90)
C 13	Furfural ace toph en on e	36	<b>9</b> 0	2 308	179/7, (26)
	2-Thenalacetophenone	36	96	2 482	(59)

#### KETONES

#### Ch. 10

#### TABLE 35. ACETYLENIC KETONES

с <b>л</b>	Compound	Method	Yi <b>e</b> ld (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
C4	Methyl ethynyl ketone	179	40	10 205	86, 181Dn, 143pN
C s	3-Pentyn-2-on e	179	67	10 ²⁰⁴	74/95, 1.4380 ²³ , 149Dn
C6	<i>n</i> -Propyl ethynyl ketone	179	70	10 ²⁰⁸	66/100, 137Da
C.	3-Octyn-2-one	179	80	10 ²⁰⁸	76/15, 88Dn, 109Se
		188	58†	10 ³⁹⁶	76/15, 1.4446 ¹⁸
C,	3-Nonyn-2-one	188	55†	10 ³⁹⁶	87/13, 1.4463 ²⁵
	Phenyl ethynyl ketone	179	80	10 203	(51), 214 Dn
C10	4-Phenyl-3-butyn-2-one	188	45†	10 ³⁹⁶	102/3, 1.5735 ²⁵
		188	55	10 ³⁹⁷	125/14
C 15	Phenyl phenylethynyl	189	74	10424	(55)
	ketone	193	85	10424	(66)

For explanations and symbols see pp. xi-xii.

#### TABLE 36, HALO KETONES

C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic and A	licyd	ic Halo Keto	nes
c,	Chloroacetone	66 184	72	4 ⁴⁹⁵ 10 ⁹⁰	120
	Bromacetone	66	44	4 483	42/13
	a,a'-Dibromoacetone	66	60	4634	98/22, (26.5)
	$\alpha, \gamma$ -Dichloroacetone	179	75	10 ²⁰⁵	175, (45)*
	a,a,a'-Tribromoacetone	66	60	4634	116/14, (29)
	Hexafluoroacetone hydrate	182	60	10 ²³⁶	57/93, 1.3288
C₄	Methyl a-chloroethyl ketone	66	62	4 496	113, 1.4171
	Methyl a-bromoethyl ketone	66	50	4 484	34/12, 1.4571
	Methyl $\beta$ -chloroethyl	73	67	4124	50/15
	ketone	207	40	10 ⁵⁹⁹	48/15
	Chloromethyl ethyl ketone	66	21	4 ⁴⁹⁶	138, 1.4372
	Bromomethyl ethyl	57	55	4 ⁵¹⁹	155, 1.4670
	ketone	66	17	4***	50/12, 1.4670
	Chloromethyl β-chloro- ethyl ketone	207	45	10 ⁵⁹⁹	81/2.5
	Chloromethyl $\beta$ -iodoethyl ketone	57	84	4 ⁸²³	(55)
	a,a'-Di bromodiacetyl	66	71	4 ⁴⁹³	(117)

#### TABLE 36. HALO KETONES

#### TABLE 36 (continued)

C _n	Compound	Me thod	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic an	nd Alicycl	ic Halo	Ketones (a	ontinued)
C,	Methyl a-chloro-n-propyl	66	44	4 494	66/56
	ketone	66	37	4 ⁴⁶⁸	38/12
	Methyl <i>y</i> -chloro-n-	184	91	10 ⁶⁹⁴	71/20, 1.4375 ²⁵
	propylketone				
	Methyl a-bromo-n-	66	50	4 485	78/50, 1.4563 ²²
	propyl ketone	66	53	4 488	53/14, 1.4629
	Chloromethyl <i>n</i> -propyl ketone	179	83	10 ²⁰⁶	66/26
	Bromomethyl <i>n</i> -propyl	57	27	4 519	92/50 1 4575
	ketone	66	23	465	92/50, 1.4575 $92/50, 1.4620^{23}$
	Methyl a-chloroi sopropyl	66	59		146 1 4200 1160-
	kerone	00	70	r	140, 1.4390, 11004
	Methyl a-bromoi sopropyl ketone	66	35	4 ⁴⁸⁵	84/150, 1.4590 ¹⁶
	Bromomethyl i sopropyl ketone	57	46	4 ⁵¹⁹	86/50, 1.4467 ^{14•5}
	1-Bromo-5-chloro-2- pentanone	57	80	4 ⁵¹⁹	114/13, 1.5009 ¹⁹⁺⁵
	Ethyl β-chloroethyl ketone	207	45	10 ⁹⁸	33/2.5, 1.4361
	α-Chloroethyl β-chloro- ethyl ketone	207	60	10 ⁵⁹⁹	65/1.5, 1.4631
	Di- $\beta$ -chloroethyl ketone	207	48	10 600	77/2. 1.4710 ¹⁶
	Bromoethyl $\beta$ -bromoethyl ketone	207	60	10 599	77/0.1
	2, 3-Di bromo-3-methyl- 2-bu tano ne	74	97	4 **3	53/1
	1,5-Di bromo acetyl- aceton e	184	67	10 ¹⁸⁹	(7), 152Cu
	Acetyltrifluoroacetone	203	80	10 ⁵⁶⁰	107/760, 1.3893 ²¹ , 189Cu
C 6	6-Bromo-2-hexanone	54	58	4 125	105/15, 1.4713, 81Dn
	1-Chloro-2-hexanone	189	51†	10 ⁴⁰¹	72.5/15, 1.4370 14+
	1-Bromo-2-hexanone	57	50	4 519	108/50, 1.4486 ¹⁵⁻⁵
		208	67†	10 601	88/30
	Bromomethyl isobutyl ketone	57	70	4 ⁵¹⁹	102/50, 1.459517
	2-Methyl-1-chloro-3- pentanone	70	50	4 348	64/9, 70Se
	2-Chloro-2-methyl-4-	53	74	4 167	52/14
	2, 3-Dibromo-3-methyl-2- pentanone	74	90	4 443	82/5
	1-Chloro-3,3-dimethyl- 2-butanone	66	85	4 ***	76/15, 1.4422, 144Da
	1-Bromo-3,3-dimethyl-2-	66	68	4 489	49/1, 72/10

#### KETONES

Ch. 10

C_n

C₈

C,

	•	TABL	E 36 (a	continued)	
C _n	Compound	<b>Me</b> thod	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic an	d Alicycl	ic Halo	Ketones (c	ontinued)
C6	2-Chlorocyclohexanone	66	57	4 498	79/7, (23), 1.4825
		66	66	4 497	91/15
	2-Bromocyclohexanone	66	31†	4 643	113/20, 1.5085 ²⁵
2,	1-Chloro-2-heptanone	57	90	4 522	84/16
•	1-Bromo-2-heptanone	208	851	10 601	110/30, 1.4644 ²⁵
	-	57	70	4 519	96/14, 1,4645 ¹⁸
	3-Bromo-2-heptanone	66	21†	4 643	88/20, 1.4620 25
		66	43	4 487	80/9, 1.4613
	2-Chloro-3-heptanone	189	431	10 <b>***</b>	68/15
	1-Bromo-6-heptanone	51	47	4 67	108/8
	3- Methyl-6- bromo-2- h exanon e	54	44	4 ³⁷⁰	74/1.5
	3,4-Dimethyl-4-chloro 2-pentanone	207	42	10 ¹⁰¹	64/14
8	Chloromethyl <i>n</i> -hexyl ketone	57	92	4 522	103/16
	3-Bromo-3-methyl-4- heptanone	66	45	4 486	88/22, 1.4630
	2- Ethyl- 1- chloro- 3- hexanone	70	50	4 ⁵⁴⁸	92/12, 115Se
	4,5-Dimethyl-5-chloro- 3-hexanone	207	57	10 ¹⁰¹	78/17
	Methyl a-bromocyclo- hexyl ketone	66	54	4 ⁶³⁵	58-65/3, 1.5027, (-8)
	Bromomethyl cyclo- hexyl ketone	57	95	4 ⁶³⁵	1.5033, (-2), 131Da
	1-Acetyl-1,2-dibromo- cyclohexane	74	60	4 442	(48)
	1-(Dibromoacetyl)- 1- bromocyclohexane	66	80	4 645	(74)
33	1-Bromo-2-tridecanone	57	92	4 524	(53)
		Aromati	c Halo	Ketones	
	w-Fluoroacetophenone	178	46	10 105	95/12, (28)
	$\omega$ - Bromoacetophenone	66	96	4 499	(51)
	$\omega$ -Dichloroacetophenone	66	97	4 637	134/13, 144/25
	$\omega$ -Di bromo a cetophenone	66	50	4 502	160/13, (37)
	$\omega$ - Trifluoroacetophenone	178	64	10 100	67/37, 1.4576
	$\omega$ -Trichloroac etophenon e	66	95	4 636	102/3.5, 1.5685
		178	70	10 115	121/15
	<i>m</i> -Bromophenacyl bromide	64	40	4 332	174/14, (51), 164Se
	p-Bromophenacyl bromide	66	72	4 500	(109)
	o-Chloroacetophenone	184	54†	10 490	229/758
		185	81†	10 312	87/5, 160Se*

#### TABLE 36. HALO KETONES

#### TABLE 36 (continued)

		17. 1 1		
Compound	Method	(%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
Arc	omatic Ha	lo Keta	ones (continu	ued)
o-Bromoacetophenone	56	80	4 332	112/10, 177Se
-	187	80	10 370	189Dn
	212	65	10 684	117/12, 177Se*
<i>m</i> -Chloroacetophenone	56	83	4 334	113/11, 1.5494*
-	183	76	10 245	92/3, 232Se*
m-Bromoacetophenone	56	56	4 331	132/17, 1.5755, 233Se
<i>m</i> -Iodoacetophenone	56	53	4 334	117/4, 1.6220
p-Fluoroac etophenone	178	74	10 110	79/10, 1.5081 ²⁵
	178	76	10 111	196, 219Se
p-Chloroacetophenone	178	78	10 <b>113</b>	126/24
•	178	83	1012	(12), 204Se*
p-Bromoacetophenone	178	79	10113	117/7, (50.5), 129-Ox*
p-Iodoacetophenone	56	52	4 3 3 5	140/9, (84)
	178	95	10 114	(85)
a-Chloro-a-phenyl-	66	84	4 510	118/16, 1.5373
a-Bromo-a-phenyl-	66	69	4 504	127/7
Chloromethyl benzyl	57	85	4 520	135/19, 98/1
Bromomethyl benzyl	57	62	4 519	106/0.2, 1.5593 ¹⁹⁺⁵
a-Chloropropiophenone	178	66	10 109	133/26
a-Bromonsonionhenone	66	421	4 643	$139/20, 1.5686^{25}$
B-Chloroproproprione	178	65	10 107	(50)
	178	85	10 106	(48)
Bromontonionhenone	178	03	10 112	(59)
a a-Dibtomontopio	66	83	A 651	180/64 (30.5)
a, a-prinomopropro-	00	05	-	100, 04, (30.))
a & Dibtomonsonio	179	08	10 116	(56)
nhenone	1/0	70	10	()0)
o-Chlosohen zul methyl	180	60	10 669	130/15, 120-Ox
ketone	109	00	10	190, 19, 120 01
the Chloroben zul methyl	178	16	10 117	86/1
ketone	170	10	10	507 I
o-Chloropropiophenone	56	85	4 333	106/12, 173Se
o-Bromopropiophenone	56	77	4 333	118/11, 179Se
m Chloropropiophenone	56	73	4 333	(46), 180Se
m Bromoptopiophenone	56	44	4 333	(40), 183Se
h-Chloropropiophenone	56	76	4 333	118/2, (35), 177Se
p-Bromopropiophenone	56	58	4 335	140/2, (46), 171Se
p-Methylphenacyl bromide	66	94	4 ⁵⁰¹	(50)
p-Acetobenzyl bromide	54	46	4 369	136/5
m-Trifluoromethylace-	187	50	10 ³⁶⁸	202
tophenone	189	91	10 368	202

A DESIGNATION OF A DESI

### KETONES

Ch. 10

	TABLE 36 (continued)								
C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aron	natic Halo	Keton	es (continued	d)				
C 10	a-Bromo-n-propyl	66	98	4 503	154/23				
	Chloromethyl β-phenyl-	57	85	4 510	(40), 146Dn				
	ethyl ketone	179	82	10 143	111/5, (41), 147Dn				
	4-Phenyl-3-chloro-2- butanon e	184	60 <b>†</b>	10 ²⁸⁸	99/4, 1.5268, 139Dn				
	4-Ph enyl-3-bromo-2- butanon e	66	81	4 ⁵⁰³	155-160/30				
	Benzalacetone dichloride	74	34	440	(93)				
	Benzalacetone dibromide	74	57	4 439	(125)				
	1,3-bis-Chlowacetyl- benzene	57	83	4 ⁵²⁶	(98)				
С 11	a-Bromoisobutyl phenyl ketone	66	80	4 503	145-155/20, (52)				
С 13	a-Bromoacetylnaph- thal <i>ene</i>	66	80	4 638	215/15				
C 13	a-Bromoisobutyryl- mesitylene	178	70	10 122	170/24				
	o-Chloroben zophenone	178	86†	10118	180/15. (44)				
	o-Bromobenzophenone	178	52	10 120	153/0.05, 133-Ox *				
	-	178	80	10 121	190/14				
	p-Chlorobenzophenone	178	82	10119	(78), 106Ph*, 185Dn*				
с.,	Phenyl a-chlorobenzyl	53	79	á ¹⁸³	(67)				
	ketone	62	65	4 407	(68)				
	o-Chlorobenzyl phenyl ketone	190	73	10 <b>45</b> 0	(71), 86-Ox				
	m-Chlorobenzyl phenyl ketone	190	42	10 <b>432</b>	(43), 102-Ox				
	p-Chlorobenzyl phenyl ketone	190	70	10 <b>431</b>	(138), 96-0x				
	o-Chlorophenyl benzyl ketone	190	71	10 <b>430</b>	178/5, 132-Ox				
	<i>m</i> -Chlorophenyl benzyl ketone	190	72	10 <b>429</b>	(62), 120-Ox*				
	p-Chlorophenyl benzyl ketone	190	77	10 431	(108), 123-Ox				
	4-Chlorobenzil	183	93	10 ⁵⁶⁶	(73)				
	4-Bromobenzil	183	94	10 <b>566</b>	(87)				
	2,2'-Dichlorobenzil	179	39†	10195	(129)				
C 15	a-Chlorodi ben zyl ketone	66	80	4 511	195/12, (68.5)				
	a-Bromodibenzyl ketone	66	99	4 506	(49)				
	Benzalacetophenone di- chloride	74	96	4 **1	(113)				

#### TABLE 37. HYDROXY KETONES

#### 375

.

TABLE	36	(continued)
-------	----	-------------

C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Arc	omatic Halo	Keton	es (continue	d)
C 15	a-Bromo-4-propionyl- biphenyl	66	75	4 505	(79)
C 16	9-ω-Bromoacetylan- thracene	66	50	4 508	(107)
		Hetero	cyclic	Halo Ketone	\$
C.	2-Chloroacetylfuran	57	88†	4 527	9 <del>3-</del> 108/4
	2-Chloroacetyl- thiophene	66	77	4 513	113/5, (48)
	2-Bromoacetyl- thiophene	66	80	4 ⁵⁰⁹	98/1.5, 1.6258
C 10	2-Chloroacetylbenzo- furan	57	95	4 644	(105)
С11	4-Quinolyl chloromethyl ketone	57	50	4 525	(101)

For exp	lanations	and	symbols	Sec DD.	xi-xii.
TOT CAP			591400-0	Dee pp	

#### TABLE 37. HYDROXY KETONES

.

C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alipha	ic and Al	icyclic	Hydroxy Ke	ODEB
C,	Acetol (1-hydroxy-2- propanone)	95	58	5 522	42/12
C₄	1-Hydroxy-3-butanone	84	44 †	5 669	74/13, 1.4302 ¹⁵
-		102	28	5 207	71/12, 1.435 ¹⁵
с,	1-Hydroxy-2-pentanone	95	15	5 711	152/760
•	4-Hydroxy-2-pentanone	79	35	5 158	94/43, 1.4238 ²⁵ , 104Ph
	5-Hydroxy-2-pentanone	99	31	5 623	75/3, 1.4350 25
		181	30	10 <b>229</b>	86/10, 155Se
	3-Methyl-4-hydroxy-2-	102	93	5 ²⁰⁸	84/19
	Dimethylacetylcathinol	80	261	5 398	140 87-Ox. 1655e
	2-Hydroxy cyclopentanone	104	16	5 761	74/10, 1.4701 ²⁵
C,	5-Hydroxy-2-hexanone	184	69	5 732	61/2, 1.4312 ²⁵ , 151Se
Ū	4-Hydroxy-3-hexanone (propionoin)	104	55	5 636	60-65/12
	5-Hydroxy-3-hexanone	79	51	5 158	76/12, 1.4280 ²⁵
	3- Methyl- 3- hydroxy- 2- pentanone	200	60	10 <b>511</b>	73/50, 1.4200, 150Se

#### **KETONES**

Ch. 10

	TABLE 37 (continued)						
С _п	Compound	Method	Yield (%)	Chapter ^t ef.	B.p./mm., n ^t _D , (M.p.), Deriv		
	Aliphatic and	Alicyclic	: Hydro	xy Ketones	(continued)		
C6	3-Methyl-4-hydroxy-2- pentanone	102	67	5 ⁷³⁸	76/10, 1.4350		
	4-Methyl-4-hydroxy-2- pentanone (diacetone alcohol)	102	71	5 ²⁰⁴	73/23		
	2-Methyl-1-hydroxy-3- pentanone	102	57	5740	94/15, 1.4346		
	3-Ethyl-4-hydroxy-2- butanone	102	55	5 740	96/17, 1.4362 ¹⁸		
	2-Hydroxycyclohexanone	96	76	5 187			
		104	55	5 ⁷⁶¹	(117)		
C,	4-Hydroxy-2-heptanone	102	80	5 210	95/12 1.4357		
	2-Hydroxy-4-heptanone	79	58	5 158	101/24 1.4300 ²⁵		
	3- Methyl- 4- hydroxy- 2- h exanone	102	61	5 211	95/20, 1.435 ²⁴		
	2-Methyl-5-hydroxy-3- hexanone	<b>79</b>	50	5 158	73/9, 1.4278 ²⁵		
	2-Hydroxymethyl-1-cyclo- hexanone	102	20	5 216	115/16, 129Ph, 145pN		
С.	2-Hydroxy-4-octanone	79	66	5 150	91/8, 1,4333 ²⁵		
	5-Hydroxy-4-octanone (butyroin)	104	70	5 ⁶³⁶	80-86/12		
	3- Methyl- 3- hydroxy- 2- heptanone	89	46†	5 ³⁹⁸	84/19, 152Se		
	3-Methyl-4-hydroxy-2-	102	45	5 212	110/16, 1.442		
	heptanone	102	82	5 ²⁰⁹	115/30		
	5-Methyl-5-hydroxy-3- heptanone	102	67	5 205	86/14, 1.4386 ¹⁴ , 125Se		
	5-Methyl-2-hydroxy-4- heptanone	79	64	5 ¹⁵⁶	114/36, 1.4318 ²⁵		
	6-Methyl-2-hydroxy-4- heptanone	79	49	5 158	86/9, 1.4294 ²⁵ , 112Ph		
	4-Ethyl-4-hydroxy-3-	193	54	10 <b>501</b>	178/742		
	hexanone	198	59	10 502	89/35, 177Se		
	2,2-Dimethyl-5-hydroxy- 3-hexanone	79	68	5 ¹³⁸	73/10, 1.4243 ²⁵		
	2,5-Dimethyl-4-hydroxy- 3-hexanone (iso- butyroin)	104	75	5 636	70-75/14		
	2-(a-Hydroxy-n-propyl)- cyclopentanone	102	45	5 215	1'05/9		
9	3- Methyl-4-hydroxy-2- octanone	102	35	5 211	98/16, 1.4404 ²⁹		

### TABLE 37. HYDROXY KETONES

TABLE 37 (continued)

C _n	Compound	Method	Yi <b>el</b> d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphatic and	Alicyclic	: Hydro	xy Ketones (	(continued)
C 10	2,2,5,5-Tetramethyl-4- hydroxy-3-hexanone	104	60	5 636	85-95/12
	2-(1'-Hydroxycyclo- pentyl)-cyclopentanone	102	40	5 ²⁰⁵	99/3, (31), 78-0x
	Aro	omatic Hyd	lroxy K	etones	
с.	m-Hydroxyacetophenone	93	48	5 493	(95)
-0	2,4-Dihydroxyaceto- phenone	178	65	10 124	(144)
	2,5-Dihydroxyaceto- phenone	209	77	10 ⁶⁰⁷	(203)
	2,3,4-Trihydroxyace- tophenone	178	57	10 125	(172)
	2,4,6-Trihydroxyace- tophenone	178	87	10 129	(219)
C,	Acetylphenylcarbinol	95	72	5 ⁵²³	123/13, 113-Ox, 126Dn
		190	50	10 <b>435</b>	137/24, 194Se, 170Dn
	Methylben zoylcarbinol	95	87	5 523	123/14, 134-Ox
	α,β-Dihydroxypropio- phenone	98	90	5 619	(82)
	o-Propioph enol	209 [°]	35	10 <b>605</b>	115/6
	p-Propioph <b>e</b> nol	178	82	10 130	(149), 170Se
		209	50	10 <b>605</b>	(148)
C <u>1</u> 0	Acetylphenylmethyl- carbinol	105	48	5 ⁶⁵⁰	132/10
C 12	Phenyltrimethylace- tylcarbinol	105	49	5 649	(47)
C ₁₁	2-Hy droxy ben zoph en on e	97	96	5 ⁵³⁶	(153)
	3-Hydroxy ben zoph enone	97	88	5 536	(116)
	4-Hydroxybenzophenone	97	95	5 ⁵³⁶	(134)
с.,	Benzoin	79	93	5 ¹⁵⁶	(134)
14	-	79	97	5 ¹⁵⁷	
		104	92	5 ⁶⁴⁰	(129)
		105	90	5 ⁶⁴⁸	(133)
	o, o'- Dichlorob <del>e</del> n zoin	104	40	5 646	(57)
	m, m - Dichloroben zoin	104	22	5 646	(76)
	p,p'-Dichlorobenzoin	104	88	5 646	(88)
	4, 4 - Dihydroxybenzil	97	<b>8</b> 9	5 541	(235)
C 15	p-Methoxybenzoin (benzanisoin)	104	31	5 644	(106)

378	3	Ch. 10			
		TABLE	37 (ca	mtinued)	
Cn	Compound	Method	Yi eld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Arom	atic Hydro	xy Ket	ones (contin	ued)
C 16	Diphenylacetoin p,p'-Dimethoxybenzoin (ani soin)	187 104	45 73	10 372 5 643	(52), 169 Se, 84NBz (113)
C ₁₇ C ₂₂	2',4',6'-Trimethylbenzoin β-Naphthoin	105 104	63 78	5 648 5 642	(103) (126), 172-Ox
	Н	e terocycli	c Hydro	oxy Ketones	
С ₆ С ₁₀	2-Hydroxyacetylfuran a-Furoin 2, 2'-Thenoin	114 104 104	74 38 30	5 764 5 647 5 763	(82) (135) (109)
F	or explanations and symbol	s see pp. :	ri-rii.		
	т	ABLE 38	. кетс	) ETHERS	
C _n	Compound M	Yie ethod (9	eld 6) Cha	apter ^{ref} . E	3.p./mm., n ^t _D , (M.p.), Deriv.

	-		(%)		
	Ali	phatic a	and Alio	yclic Kete	) Ethers
C4	Mexthoxymethyl methyl	179	29	10 209	115/756, 1.3982, 111pN, 163Dn
	ketone	187	48	10 373	114/746, 1.3980, 159Dn *, 109p N*
C ₅	1-Methoxyethyl methyl ketone	187	37	10 ³⁷⁵	116/739, 1.3936, 141Se
	4-Methoxy-2-butanone	121	73	6 110	66/50, 138/745, 1.4050
		195	75	10 ⁵⁷⁸	140/745
	Methoxymethyl ethyl	187	49	10 ³⁷³	133/757, 1.4063
	ketone	187	59	10 ³⁷⁹	132, 198Dn*
	sym-Dimethoxyacetone	187	45	10 ²⁰⁸	78/18, 1.4174, 120Se
	Ethoxyacetone	187	65	10 ^{3 b1}	36/28, 1.4000, 96Se*
C ₆	1-Methoxypropyl methyl ketone	187	29	10 ³⁷⁸	71/95, 1.4015 ²⁵ , 147Se
	Methoxymethyl <i>n</i> -propylketone	187	51	10 ³⁷³	153/745, 1.4119
	Methoxymethyl isopropyl	187	30	10 ³⁷⁴	144, 163Dn
	k et on e	187	44	10 ³⁷³	145/748, 1.4078
	1-Methoxyethyl ethyl ketone	187	22	10 ³⁷⁵	136/750, 1.4019, 120Se
	4-Ethoxy-2-butanone	121	77	6111	150/764, 74/50
	Ethoxymethyl ethyl ketone	187	84	10377	147/752, 1.4068
	<i>n</i> -Propoxymethyl methyl ketone	187	52	10 ³⁷⁶	49/6, 1.4052

#### TABLE 38. KETO ETHERS

#### TABLE 38 (continued)

C _n	Compound	Method	Yi <b>e</b> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic	and Ali	cyclic	Keto Ethers	(continued)
C ₆	Isopropoxymethyl methyl	187	48	10 376	35/10, 1.4004, 144Dn
-	ketone	187	53	10 ³⁷⁴	142, 142Dn
C,	1-Methoxy-5-hexanone	187	23	10 ³⁷⁹	67/8, 1.4180 ²⁵ , 70Dn
•	Methoxymethyl <i>n</i> -butyl	187	34	10 ³⁷³	169/744, 1.4173
	k e ton e				
	Methoxymethyl i sobutyl ketone	187	30	10 ³⁷³	164/751, 1.4140
	Methoxymethyl s-butyl ketone	187	32	10 373	164/757, 1.4162
	Methoxymethyl <i>t</i> -butyl ketone	187	19	10 373	159/743, 1.4193
	1-Methoxy ethyl n-propyl	187	33	10 375	155/746, 1.4091, 169Se
	ke ton •	187	73	10 ³⁸²	93/100, 170Se
	1-Methoxyethyl isopropyl	187	13	10 ³⁷⁵	58/31, 1.4092, 146Se
	1-Methoxypropyl ethyl	187	79	10 ³⁷⁸	63/40, 1.4080 ²⁵ , 145Se
	a-Methoxypinacolone	124	59	6173	83/4. 189Dn
	<i>n</i> -Propoxymethyl ethyl	187	46	10 ³⁷⁶	56/4, 1.4122
	ketone Isopropoxymethyl ethyl ketone	187	41	10 ³⁷⁶	47/11, 1.4082, 103Dn
	sym-Diethoxyacetone	187	67	10 ²⁰⁸	105/35, 1.4202, 91Se
	2-Methoxycyclohexanone	179	46	10210	59/8, 1.4519 ²⁵
	4-Methoxycyclohexanone	179	65 /	10 ²⁰⁷	85/14, 1.4560, 178Se, 150Dn
C8	Methoxymethyl <i>n</i> -amyl	187	46	10 ³⁷³	191/753, 1.4220
	Methoxymethyl isoamyl	187	71	10 ³⁷³	186/752, 1.4210
	1-Methoxyethyl <i>n</i> -butyl	187	63	10 ³⁷⁵	82/36, 1.4160, 154Se
	1-Methoxyethyl isobutyl	187	21	10 375	52/9, 1.4128, 145Se
	1-Methoxyethyl s-butyl	187	43	10 ³⁷⁵	77/36, 1.4158, 127Se
	1-Methoxyethyl <i>t</i> -butyl	187	14	10 ³⁷⁵	64/34, 1.4130, 121Se
	1-Methoxypropyl <i>m</i> -propyl	187	69	10 ³⁷⁸	86/42, 1.4131 ²³ , 157Se
	1-Methoxypropyl iso-	187	44	10 ³⁷⁸	66/23, 1.4159, 136Se
	6-Ethoxy-2-hexanone	184	60†	10 291	92/13, 64Dn
	Ethoxymethyl s-butyl	187	29	10 377	173/743, 1.4158
	ketone		-		

#### KETONES

Ch. 10

		ТАВ	LE 38	(continued)	
C _n	Compound	Method	Yi eld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic	and Ali	cyclic	Keto Ethers	(continued)
C,	1-Isopropoxy-3-methyl- 2-butanone	187	17	10 37 4	160, 88Dn
	Methyl a-(s-butoxy)- ethyl ketone	187	69	10 ³⁸³	163/750, 1.4080, 118Se
	Methoxymethyl cyclo- pentyl ketone	187	22	10 ³⁸⁴	87/14, 1.4486 ²⁵ , 129Dn
C,	3-Methyl-6-ethoxy-2- hexanone	184	69†	10 ²⁹³	99/17
	Methoxymethyl cyclo- hexyl ketone	187	33	10 ³⁸⁴	111/21, 1.4552 ²⁵ , 102Se
		Aron	natic K	eto Ethers	
C,	Phenoxy acetone	115	93	6 ⁵¹	120/19 ,
		187	16	10 ³⁸⁰	112/12, 1.5228, 176Se
	a-Methoxyacetophenone	124	79	6 ¹⁷³	126/19, 129Se
	p-Methoxyacetophenone	178	66	10 ²⁶	125/5, 198Se
		178	96	10 ⁶	139/15, (37), 87-Ox*
C 10	Phenoxymethyl ethyl ketone	187	62	10 ³⁸⁰	100/5, 1.5201, 102Se
	a-Methoxypropiophenone	124	60	6 ¹⁷³	89-95/4, 160Dn
	$\beta$ -Methoxyethyl phenyl ketone	189	90	10 <b>404</b>	1.5250, 176Dn
	a-Ethoxyacetophenone	124	81	6 ¹⁷³	127/11, 128Se
		187	68	10 ³⁷⁷	122/15, 1.5250
	p-Methoxypropiophenone	116	88	6 <b>%</b>	152/19
		178	87	10 ⁶	125/4
	p-Ethoxyacetophenone	178	77	10 ²⁹	147/16, 1.5429 ²⁵
	2, 5- Dimethoxy ace- tophenone	178	71	10134	160/15
	3,5-Dimethoxyace- tophenone	190	57	10 <b>***</b>	(43)
с"	γ-Phenoxypropyl methyl	189	78	10 292	121/2, (50), 110Dn

	tophenone		• =		
	3, 5- Dimethoxyace- tophenone	190	57	10 <b>436</b>	(43)
Cıı	γ-Phenoxypropyl methyl ketone	189	78	10 ²⁹²	121/2, (50), 110Dn
	Phenoxymethyl <i>n</i> -propyl ketone	187	64	10 ³⁸⁰	112/4, 1.5148, 108Se
	$\beta$ -Ethoxyethyl phenyl ketone	189	82	10 ⁴⁰⁴	1.5190, 161Dn
	<i>n</i> -Propoxymethyl phenyl ketone	187	37	10 ³⁷⁶	118/6, 1.5150
C 12	δ-Phenoxybutyl methyl ketone	184	61†	10 ²⁹²	130/2, 1.5071 ²⁵ , 101Dn
	$\beta$ -n-Propoxyethyl phenyl ketone	189	82	10 ⁴⁰⁴	1.5193, 158Dn

#### TABLE 30. KETO ALDEHYDES

#### TABLE 38 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	A	romatic l	(eto E	Ethers (conti	nued)
C 12	$\beta$ -Isopropoxyethyl phenyl ketone	189	89	10404	1.5083, 175Dn
с.,	B-Naphthoxyacetone	115	85	6 ⁵¹	(77)
C 14	Phenoxymethyl phenyl ketone	187	45	10 300	187/8, (74), 187Se
	<i>m</i> -Methoxy ben zophenone	179	25†	10211	(38)
		187	77	10 ³⁸⁵	185/4, (40)
	p-Methoxy benzophenone	178	89	10 ²⁶	(62.5), 180Dn
	p-Phenoxyacetophenone	178	68	10 ¹⁰⁷	154/2, (49)
C 15	p-Methoxyphenyl benzyl ketone	190	74	10 429	(77), 118-Ox
	2-Methoxybenzil	179	60 t	10212	(72)
	4-Methoxy benzil	179	90	10 ¹⁹⁸	(63), 124-Ox
с.,	2-Ethoxybenzil	179	60 t	10212	(102)
- 10	4-Ethoxybenzil	179	60 1	10212	(71)
	Desoxvanisoin	221	98	10 345	(112)
	2.2 -Dimethoxybenzil	179	40 t	10 212	(129)
	3.3 -Dimethoxybenzil	179	60 t	10212	(83)
	4,4 -Dimethoxybenzil	179	52†	10212	(133)
	(anisil)	179	97	10 ¹⁹⁴	(132), 255Se*
F	or <b>ex</b> planations and symbo TA	BLE 39.	р. хі- кет(	xii. D ALDEHYD	ES
с _п	Compound	Metho	Yi od (	ield %) Chapter	ref. B.p./mm., n ^t _D , (M.p.), Deriv.
c,	Methylglyoxal	157		50 9 ¹⁸¹	52/12, 148Ph, 254Se
c,	3-Formyl-2-butanone	146		75 9 ¹⁷³	•
Ċ,	t-Butyl glyoxal	157	•	52 9 ¹⁶⁰	115, 172Dn, 101-Ox
c,	Pivaloylac <i>e</i> taldehyde	146		50 9 ¹⁷¹	45/13, 126Cu

9173

9¹⁷⁴

9¹⁸²

9**263** 

9 ¹⁸⁹

9177

9234

88/14, 1.5130

190Ph, 181-Ox

72/17

87/12

(73)

97/25

146

146

157

146

152

157

162

80

60

59

45

87†

72

43

For	explanations	and symbols s	ee pp. xi-xii.	

Hydroxymethylene-

1-Methyl-3-hydroxy-

methylene-2-cyclo-

C₈ Cyclohexyl glyoxal

hexanone

Phenylglyoxal

C₉ p-Acetylbenzaldehyde

methyl isobutyl ketone

a-Formylcyclohexanone

382	2	ĸ	<b>Ch.</b> 10		
C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., $n_{D}^{t}$ , (M.p.), Deriv.
C 11	Mesitylglyoxal	157	83	9179	106/4, 1.5520 19
	2-Hydroxymethylene-1- tetralone	146	94	9 <b>259</b>	180/28
C 12	$\beta$ -Naphthyl glyoxal	152	30	9 ¹⁸⁹	(109)
C ₁₄	p-Xenylglyoxal	152	90	9 ¹⁸⁹	(121)

For explanations and symbols see pp. xi-xii.

**REFERENCES FOR CHAPTER 10** 

REFERENCES FOR CHAPTER 10

¹ Bergmann, Schapiro, and Eschinazi, J. Am. Chem. Soc., 64, 559 (1942); Allen and Barker. Org. Syntheses. Coll. Vol. II. 156 (1943). ²Grummitt and Case, I. Am. Chem. Soc., 64, 880 (1942). ³Seidel and Engelfried, Ber., 69B, 2578 (1936), ⁴Mowry, Renoll, and Huber, I. Am. Chem. Soc., 68, 1105 (1946). ⁵ Bachmann, Carlson, and Moran, J. Org. Chem., 13, 916 (1948). ⁶ Noller and Adams, J. Am. Chem. Soc., 46, 1889 (1924). ⁷ Smith and Guss, J. Am. Chem. Soc., 59, 805 (1937). ⁸ Marvel, Saunders, and Overberger, J. Am. Chem. Soc., 68, 1086 (1946). ⁹ Allen, Org. Syntheses, Coll. Vol. II, 3 (1943). ¹⁰ Groggins. Unit Processes in Organic Synthesis, McGraw-Hill Book Co., New York, 1947, pp. 759-770; Thomas, Anhydrous Aluminum Chloride in Organic Chemistry, Reinhold Publishing Corp., New York, 1941, pp. 205-393. ¹¹ Dermer et al., J. Am. Chem. Soc., 63, 2881 (1941). ¹² Groggins and Nagel, Ind. Eng. Chem., 26, 1313 (1934). 13 Riddell and Noller, J. Am. Chem. Soc., 52, 4365 (1930). ¹⁴ Calloway and Green, I. Am. Chem. Soc., 59, 809 (1937). ¹⁵ Johnson in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 114. ¹⁶ Calloway, Chem. Revs., 17, 327 (1935), ¹⁷ Johnson and Glenn, I. Am. Chem. Soc., 71, 1092 (1949). ¹⁸ Long and Henze, J. Am. Chem. Soc., 63, 1939 (1941). ¹⁹ Bachmann and Sheehan, I. Am. Chem. Soc., 62, 2688 (1940). ²⁰ Mosettig and van de Kamp, J. Am. Chem. Soc., 52, 3707 (1930). ²¹ Bachmann and Struve, J. Am. Chem. Soc., 58, 1660 (1936). ²² Riegel, Gold, and Kubico, J. Am. Chem. Soc., 64, 2221 (1942). ²³ Fieser and Cason, I. Am. Chem. Soc., 61, 1742 (1939). ²⁴ Fieser and Hershberg, J. Am. Chem. Soc., 61, 1272 (1939). ²⁵ Smith and Lo, I. Am. Chem. Soc., 70, 2209 (1948). ²⁶ Chodroff and Klein, I. Am. Chem. Soc., 70, 1647 (1948). ²⁷ Fahim, I. Chem. Soc., 520 (1949). 28 Pines, Strehlau, and Ipatieff, J. Am. Chem. Soc., 71, 3536 (1949). ²⁹ Kosolapoff, J. Am. Chem. Soc., 69, 1651 (1947). 30 Baddelev, I. Chem. Soc., S99 (1949). ³¹ Ray and Rieveschl, Org. Syntheses, 28, 3 (1948); cf. ref. 4. ³² Merritt and Braun, Org. Syntheses, 30, 1 (1950). 33 Mason and Terry, I. Am. Chem. Soc., 62, 1622 (1940). 34 Read, I. Am. Chem. Soc., 44, 1751 (1922). ³⁵ Vogel, I. Chem. Soc., 612 (1948). ³⁶ Fourneau and Barrelet, Bull. soc. chim. France, 47, 77 (1930). ³⁷ Maxwell and Adams, I. Am. Chem. Soc., 52, 2959 (1930). ³⁰ Weygand and Mensdorf, Ber., 68B, 1831 (1935). ³⁹ Hennion and McLease, J. Am. Chem. Soc., 64, 2421 (1942). 40 Kadesch and Weller, J. Am. Chem. Soc., 63, 1311 (1941). ⁴¹ Kloetzel and Herzog, J. Am. Chem. Soc., 72, 1991 (1950). ⁴² Williams and Osborn, *I. Am. Chem. Soc.*, **61**, 3438 (1939). 43 Immediata and Day, J. Org. Chem., 5, 516 (1940). 44 Sachanen and Caesar, Ind. Eng. Chem., 38, 45 (1946). 45 Johnson and Offenhauer, J. Am. Chem. Soc., 67, 1046 (1945).

⁴⁶ Hughes, Ingold, and Taher, J. Chem. Soc., 953 (1940). 47 Huber et al., J. Am. Chem. Soc., 68, 1109 (1946). 48 Drake and Bronitsky. J. Am. Chem. Soc., 52, 3718 (1930). * Fieser and Kilmer, J. Am. Chem. Soc., 62, 1357 (1940). ⁵⁰ Stevermark and Gardner, I. Am. Chem. Soc., 52, 4886 (1930). ⁵¹ Meyer, Org. Syntheses, Coll. Vol. I, 60 (1941). ⁵² Bergmann, J. Org. Chem., 4, 4, (1939). 53 Von and Wagner, J. Org. Chem., 9, 163 (1944). 54 Fuson et al., J. Am. Chem. Soc., 66, 682 (1944). ³⁵ May and Mosettig, J. Am. Chem. Soc., 70, 686, 688 (1948). ⁵⁶ Shildneck. Org. Syntheses, Coll. Vol. II, 236 (1943). 57 Cook. I. Chem. Soc., 1284 (1926). ⁵⁸ Bachmann, J. Am. Chem. Soc., 57, 555 (1935). ³⁹ Hartough and Kosak, J. Am. Chem. Soc., 68, 2639 (1946). 60 Hartough and Kosak, J. Am. Chem. Soc., 69, 1012 (1947). ⁶¹ Hartough, Kosak, and Sardella, J. Am. Chem. Soc., 69, 1014 (1947). ⁶² Johnson and May, Org. Syntheses, Coll. Vol. II, 8 (1943); cf. ref. 4. ⁶³ Minnis, Org. Syntheses, Coll. Vol. II, 520 (1943); refs. 59 and 60. ⁶⁴ Levine et al., J. Org. Chem., 13, 409 (1948); J. Am. Chem. Soc., 71, 1207 (1949). 65 Hartough and Kosak, J. Am. Chem. Soc., 70, 867 (1948). 66 Hartough et al., J. Am. Chem. Soc., 69, 3093, 3096, 3098 (1947); Kosak and Hartough, Org. Syntheses, 28, 1 (1948). ⁶⁷ Emling, Beatty, and Stevens, J. Am. Chem. Soc., 71, 703 (1949). 66 Farrar and Levine, J. Am. Chem. Soc., 72, 3695 (1950). 69 Gilman. Rowe. and Dickey. Rec. trav. chim., 52, 396 (1933). ⁷⁰Hansch and Lindwall, J. Org. Chem., 10, 383 (1945); cf. ref. 71. ⁷¹ Farrar and Levine, J. Am. Chem. Soc., 72, 4433 (1950). ⁷² Burger and Bryant, J. Org. Chem., 4, 119 (1939). 73 Buu-Hoi and Royer, Rec. trav. chim., 69, 866 (1950). ⁷⁴Hart and Tebbe, J. Am. Chem. Soc., 72, 3286 (1950). ⁷⁵ Snyder and Werber, J. Am. Chem. Soc., 72, 2965 (1950). ⁷⁶ Levin, Graham, and Kolloff, J. Org. Chem., 9, 384 (1944). ⁷⁷ Cope and Field, J. Am. Chem. Soc., 71, 1591 (1949). 78 Pacaud and Allen, Org. Syntheses, Coll. Vol. II, 336 (1943). 79 Martin and Fieser, Org. Syntheses, Coll. Vol. II, 569 (1943). ⁸⁰ Kloetzel, J. Am. Chem. Soc., 62, 1708 (1940). ⁸¹ Alexander and Mudrak, J. Am. Chem. Soc., 72, 3194 (1950). ⁸² Adkins and Davis. I. Am. Chem. Soc., 71, 2955 (1949). ⁸³ Weygand and Schröder, Ber., 74B, 1847 (1941). 84 Bachmann and Struve, J. Am. Chem. Soc., 62, 1618 (1940). ⁸⁵ Newman, J. Am. Chem. Soc., 62, 1685 (1940). ⁸⁶ Arnold, Buckley, and Richter, J. Am. Chem. Soc., 69, 2323 (1947). ⁸⁷ Fieser and Seligman, J. Am. Chem. Soc., 60, 170 (1938). 88 Thomas and Nathan, J. Am. Chem. Soc., 70, 331 (1948). ⁸⁹ Fuson and Walker, Org. Syntheses, Coll. Vol. II, 169 (1943). 90 Boese. Ind. Eng. Chem., 32, 16 (1940). ⁹¹ Lutz. Org. Syntheses, 20, 29 (1940). ⁹² Christ and Fuson, J. Am. Chem. Soc., 59, 893 (1937). 93 Colonge and Duroux, Bull. soc. chim. France, (5e) 7, 459 (1940). ⁹⁴Colonge and Mostafavi, Bull. soc. chim. France, (5) 5, 1478 (1938).

95 Byrans and Doumani. Ind. Eng. Chem., 35, 349 (1943). 96 Fuson, Christ, and Whitman, J. Am. Chem. Soc., 58, 2451 (1936). 97 Royals and Hendry, I. Org. Chem., 15, 1147 (1950). 98 McMahon et al., J. Am. Chem. Soc., 70, 2971 (1948). 99 Price and Pappalardo, J. Am. Chem. Soc., 72, 2613 (1950). ¹⁰⁰ Darzens, Compt. rend., 211, 435 (1940). ¹⁰¹ Colonge and Mostafavi, Bull. soc. chim. France, (5) 6, 341-354 (1939). ¹⁰² Hawthorne and Robinson, J. Chem. Soc., 763 (1936). 103 Ruzicka, Koolhaas, and Wind, Helv. Chim. Acta, 14, 1157 (1931). ¹⁰⁴ Iones and Ramage, J. Chem. Soc., 1856 (1938). ¹⁰⁵ Truce and Sack, J. Am. Chem. Soc., 70, 3959 (1948). 106 Campbell, LaForge, and Campbell, J. Org. Chem., 14, 348 (1949). 107 Conant and Kirner, I. Am. Chem. Soc., 46, 239 (1924). ¹⁰⁸ Cohen, Wolosinski, and Scheuer, J. Am. Chem. Soc., 71, 3440 (1949). ¹⁰⁹ Baker and Barkenbus, J. Am. Chem. Soc., 58, 263 (1936). ¹¹⁰ Renoll, J. Am. Chem. Soc., 68, 1160 (1946). 111 Fosdick and Campaigne, J. Am. Chem. Soc., 63, 974 (1941); Buu-Hoi, Hoan, and Jacquignon, Rec. trav. chim., 68, 784 (1949). ¹¹² Foreman and McElvain, J. Am. Chem. Soc., 62, 1436 (1940). ¹¹³ Adams and Noller, Org. Syntheses, Coll. Vol. I, 109 (1941). ¹¹⁴ Kimura, Ber., 67, 395 (1934). ¹¹⁵ Houben and Fischer, J. prakt. Chem., 123, 313 (1929). ¹¹⁶ Davis, I. Am. Chem. Soc., 63, 1677 (1941). 117 Patrick, McBee, and Hass, J. Am. Chem. Soc., 68, 1135 (1946). ¹¹⁸ Berliner, I. Am. Chem. Soc., 66, 534 (1944). ¹¹⁹ Newton and Groggins, Ind. Eng. Chem., 27, 1397 (1935). ¹²⁰ Bergmann, I. Org. Chem., 4, 9 (1939). 121 Borsche and Scriba, Ann., 540, 90 (1939). ¹²² Fisher, Oakwood, and Fuson, J. Am. Chem. Soc., 52, 5038 (1930). 123 Sandulesco and Girard, Bull. soc. chim. France, (4) 47, 1300 (1930); cf. Close, Tiffany, and Spielman, J. Am. Chem. Soc., 71, 1265 (1949). 124 Cooper, Org. Syntheses, 21, 103 (1941). 123 Badhwar and Venkataraman, Org. Syntheses, Coll. Vol. II, 304 (1943). ¹²⁶ Brewster and Watters, J. Am. Chem. Soc., 64, 2578 (1942). 127 Coulthard, Marshall, and Pyman, J. Chem. Soc., 280 (1930). 128 Spoerri and Dubois in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 387. 129 Gulati, Seth, and Venkataraman, Org. Syntheses, Coll. Vol. II, 522 (1943). ¹³⁰ v. Auwers, Potz, and Noll, Ann., 535, 228 (1938). ¹³¹ Ungnade, Chem. Revs., 38, 419 (1946). 132 Stuart and Tallman, J. Am. Chem. Soc., 65, 1579 (1943); Skraup and Nieten, Ber., 57, 1294 (1924). 133 Buck and Ide, J. Am. Chem. Soc., 54, 3012 (1932). ¹³⁴ Villani and Lang, J. Am. Chem. Soc., 72, 2301 (1950). ¹³⁵ Somerville and Allen, Org. Syntheses, Coll. Vol. II, 81 (1943). ¹³⁶ Fieser, Gates, and Kilmer, J. Am. Chem. Soc., 62, 2968 (1940). ¹³⁷ Fieser and Price, I. Am. Chem. Soc., 58, 1841 (1936). ¹³⁸ Fieser and Peters, J. Am. Chem. Soc., 54, 4347 (1932). ¹³⁹ Fieser et al., J. Am. Chem. Soc., 70, 3197 (1948). 140 Hill, J. Am. Chem. Soc., 54, 4105 (1932). 141 Papa et al., J. Am. Chem. Soc., 70, 3356 (1948).

142 Berliner in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 229. 143 Henze and Holder, J. Am. Chem. Soc., 63, 1943 (1941). 144 Groggins, Ind. Eng. Chem., 22, 620 (1930). 145 Groggins and Newton, Ind. Eng. Chem., 21, 369 (1929). 146 Fieser, Org. Syntheses, 20, 1 (1940). 147 Papa, Schwenk, and Hankin, J. Am. Chem. Soc., 69, 3018 (1947). 140 McElvain, J. Am. Chem. Soc., 51, 3124 (1929); Roberts and McElvain, ibid., **59,** 2007 (1937). ¹⁴⁹ Sengupta, J. prakt. Chem., 151, 87 (1938). ¹⁵⁰ Blicke and Tsao. I. Am. Chem. Soc., 66, 1645 (1944). ¹⁵¹ Blicke and Feldkamp, J. Am. Chem. Soc., 66, 1089 (1944). ¹⁵² Blicke and Grier, J. Am. Chem. Soc., 65, 1726 (1943). 153 Papa et al., J. Am. Chem. Soc., 68, 2133 (1946). ¹⁵⁴ Ferber and Brückner, Ber., 72B, 999 (1939). ¹⁵⁵ Steinkopf and Günther, Ann., 522, 31 (1936). ¹⁵⁶ Fuson, Ullyot, and Gehrt, J. Am. Chem. Soc., 60, 1200 (1938). ¹⁵⁷ Yoke, Louder, and Smith, J. Chem. Education, 10, 374 (1933). ¹⁵⁸ Sherrill, J. Am. Chem. Soc., 52, 1990 (1930). ¹⁵⁹ Young and Roberts. 1. Am. Chem. Soc., 67, 321 (1945). 160 Bennett and Elder, J. Chem. Education, 13, 273 (1936). ¹⁶¹ Grignard and Fluchaire, Ann. chim., (10) 9, 14 (1928). ¹⁶² Smith et al., *I. Am. Chem. Soc.*, 61, 3082 (1939). ¹⁶³ Wagner and Moore, J. Am. Chem. Soc., 72, 974 (1950). ¹⁶⁴ Whitmore and Lewis, J. Am. Chem. Soc., 64, 2965 (1942). ¹⁶⁵ Whitmore and Stahly, J. Am. Chem. Soc., 55, 4155 (1933). 166 Mann and Porter, J. Chem. Soc., 456 (1944). ¹⁶⁷ Powell, J. Am. Chem. Soc., 46, 2516 (1924). 168 Mosher and Langerak, J. Am. Chem. Soc., 71, 286 (1949). ¹⁶⁹ Signaigo and Cramer, J. Am. Chem. Soc., 55, 3329 (1933). ¹⁷⁰ Macbeth and Mills, J. Chem. Soc., 711 (1945). ¹⁷¹ Ungnade and McLaren, J. Org. Chem., 10, 30 (1945). ¹⁷² Pezold and Shriner, J. Am. Chem. Soc., 54, 4709 (1932). ¹⁷³ Price and Karabinos, J. Am. Chem. Soc., 62, 1160 (1940). 174 Bartlett and Schneider, J. Am. Chem. Soc., 67, 143 (1945). ¹⁷⁵ Westheimer, Chem. Revs., 45, 419 (1949). ¹⁷⁶ Osterburg and Kendall, J. Am. Chem. Soc., 42, 2618 (1920). 177 Gredy. Ann. chim., (11) 4, 22 (1935). ¹⁷⁸ Kornfeld, Jones, and Parke, J. Am. Chem. Soc., 71, 150 (1949). ¹⁷⁹ Carlin, J. Am. Chem. Soc., 67, 932 (1945). 180 Ungnade and Ludutsky, J. Org. Chem., 10, 521 (1945). 181 Frank, Berry, and Shotwell, J. Am. Chem. Soc., 71, 3889 (1949). 182 Adkins and Hager, J. Am. Chem. Soc., 71, 2965 (1949). 183 Adkins and Hager, J. Am. Chem. Soc., 71, 2967 (1949). 184 Shunk and Wilds, J. Am. Chem. Soc., 71, 3946 (1949). 185 Lock and Schreckeneder, Ber., 72B, 516 (1939). 186 Neidig et al., J. Am. Chem. Soc., 72, 4617 (1950). 187 Tsatsas, Ann. chim., (12) 1, 348 (1946). 188 Ungnade, J. Org. Chem., 13, 364 (1948). ¹⁸⁹ Fieser and Cason, I. Am. Chem. Soc., 62, 434 (1940). ¹⁹⁰ Clarke and Dreger, Org. Syntheses, Coll. Vol. I, 87 (1941).

#### **REFERENCES FOR CHAPTER 10**

¹⁹¹ Ruggli and Herzog, Helv. Chim. Acta, 29, 111 (1946). ¹⁹² Kinney, J. Am. Chem. Soc., 51, 1596 (1929). ¹⁹³ Pearl and Dehn, J. Am. Chem. Soc., 60, 57 (1938). ¹⁹⁴ Weiss and Appel, J. Am. Chem. Soc., 70, 3666 (1948); Klein, ibid., 63, 1474 (1941). ¹⁹⁵ Gilman and Broadbent. J. Am. Chem. Soc., 70, 2619 (1948). ¹⁹⁶ Backer, Rec. trav. chim., 57, 978 (1938). ¹⁹⁷ Fuson and Robertson, J. Org. Chem., 7, 469 (1942). ¹⁹⁸ Kinney, J. Am. Chem. Soc., 51, 1596 (1929); cf. ref. 190. ¹⁹⁹ Jenkins, Buck, and Bigelow, J. Am. Chem. Soc., 52, 4496 (1930). 200 Hartman and Dickey, J. Am. Chem. Soc., 55, 1229 (1933). 201 Leonard and Mader, J. Am. Chem. Soc., 72, 5390 (1950). 202 Dane, Schmitt, and Rautenstrauch, Ann., 532, 37 (1937). 203 Bowden, Heilbron, Jones, and Weedon, J. Chem. Soc., 39 (1946). ²⁰⁴ Braude et al., J. Chem. Soc., 612 (1949). 205 Conant and Ouayle, Org. Syntheses, Coll. Vol. I, 211 (1941). 206 Elderfield and Ressler, J. Am. Chem. Soc., 72, 4067 (1950). ²⁰⁷ Marvel and Walton, J. Org. Chem., 7, 88 (1942). ²⁰⁸ Henze and Rodgers, J. Am. Chem. Soc., 61, 433 (1939); 62, 1759 (1940). 209 Mariella and Leech, J. Am. Chem. Soc., 71, 3558 (1949). ²¹⁰ Adkins et al., I. Am. Chem. Soc., 71, 3629 (1949). 211 Lea and Robinson, I. Chem. Soc., 2354 (1926). 212 Leonard et al., J. Am. Chem. Soc., 71, 2997 (1949). ²¹³ Baer and Kates, J. Am. Chem. Soc., 67, 1482 (1945). ²¹⁴ Hurd and McNamee, Org. Syntheses, Coll. Vol. I, 244 (1941), note 11. ²¹⁵ Dimroth and Resin, Ber., 75B, 322 (1942). 216 Russell and Vanderwerf, J. Am. Chem. Soc., 69, 11 (1947). ²¹⁷ McRae, Charlesworth, and Alexander, Can. J. Research, 21B, 1 (1943). ²¹⁸ Colonge, Watteau, and Cumet, Bull. soc. chim. France, (5) 14, 246 (1947). ²¹⁹ Long and Troutman, J. Am. Chem. Soc., 71, 2469 (1949); Parkes and Williams, J. Chem. Soc., 67 (1934). 220 Ford-Moore and Rydon, J. Chem. Soc., 679 (1946). ²²¹ Bersin in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 143. 222 Oppenauer, Org. Syntheses, 21, 18 (1941). 223 Adkins and Franklin, J. Am. Chem. Soc., 63, 2381 (1941). 224 Woodward, Wendler, and Brutschy, J. Am. Chem. Soc., 67, 1425 (1945); Lutz. Jordan, and Truett, ibid., 72, 4085 (1950). 225 Hurd, Greengard, and Roe, J. Am. Chem. Soc., 61, 3359 (1939). 226 Paul, Bull. soc. chim. France, (5e) 8, 514-518 (1941). 227 Kleiderer and Kornfeld, J. Org. Chem., 13, 455 (1948). 228 Speck and Bost, J. Org. Chem., 11, 788 (1946). 229 Kyrides and Zienty, J. Am. Chem. Soc., 68, 1385 (1946). 230 Kolfenbach et al., Ind. Eng. Chem., 37, 1178 (1945). ²³¹ Henne and Perilstein, J. Am. Chem. Soc., 65, 2183 (1943). ²³² Church, Whitmore, and McGrew, J. Am. Chem. Soc., 56, 181 (1934). 233 Henne and Hill, J. Am. Chem. Soc., 65, 752 (1943). ²³⁴ Cook and Whitmore, J. Am. Chem. Soc., 63, 3540 (1941). 235 Moersch and Whitmore, J. Am. Chem. Soc., 71, 819 (1949); Mosher and Cox, ibid., 72. 3701 (1950). 236 Henne, Shepard, and Young, J. Am. Chem. Soc., 72, 3577 (1950).

237 Roberts and Sauer, J. Am. Chem. Soc., 71, 3928 (1949). ²³⁸ Mowry, J. Am. Chem. Soc., 67, 1050 (1945). ²³⁹ Emerson et al., I. Am. Chem. Soc., 68, 1666 (1946). 240 Senseman and Stubbs, Ind. Eng. Chem., 25, 1286 (1933). ¹⁴¹ Thompson, Org. Syntheses, 20, 94 (1940). ¹⁴² Huntress, Hershberg, and Cliff, I. Am. Chem. Soc., 53, 2720 (1931). 243 Winkler, Chem. Ber., 81, 256 (1948). 244 Huntress and Walter, J. Am. Chem. Soc., 70, 3704 (1948). 245 Emerson and Lucas, J. Am. Chem. Soc., 70, 1180 (1948). 246 Emerson et al., J. Am. Chem. Soc., 68, 674 (1946). ²⁴⁷ Emerson et al., J. Am. Chem. Soc., 69, 1905 (1947). 248 Rivier and Farine, Helv. Chim. Acta, 12, 865 (1929). 240 Bartlett and Schneider, J. Am. Chem. Soc., 67, 141 (1945). 250 Clarke, J. Am. Chem. Soc., 34, 679 (1911). ²⁵¹ Clarke, J. Am. Chem. Soc., 33, 529 (1911). 252 Willstätter and Hatt, Ann., 418, 152 (1919). 253 Connor and Adkins, J. Am. Chem. Soc., 54, 3420 (1932). ²⁵⁴ Renfrow, I. Am. Chem. Soc., 66, 144 (1944). ²⁵⁵ Renfrow and Walker, J. Am. Chem. Soc., 70, 3957 (1948). ²⁵⁶ Johnson and Hager, Org. Syntheses, Coll. Vol. 1, 351 (1941). 257 Dehn and Jackson, J. Am. Chem. Soc., 55, 4284 (1933). 238 Adams, Abramovitch, and Hauser, J. Am. Chem. Soc., 65, 552 (1943). 259 Briese and McElvain, J. Am. Chem. Soc., 55, 1697 (1933). ²⁶⁰ Leuchs, Heller, and Hoffman, Ber., 62, 875 (1929). ²⁶¹ Cope, Hofmann, and Hardy, J. Am. Chem. Soc., 63, 1855 (1941). ²⁶² Hudson and Hauser, I. Am. Chem. Soc., 63, 3163 (1941). ²⁶³ Bouveault and Locquin, Bull. soc. chim. France, (3) 31, 1153 (1940). ²⁶⁴ Price and Meisel, I. Am. Chem. Soc., 69, 1497 (1947). 263 Strating and Backer, Rec. trav. chim., 55, 904 (1936). 266 Hückel and Kindler, Chem. Ber., 80, 203 (1947). 267 Shive, Crouch, and Lochte, J. Am. Chem. Soc., 63, 2983 (1941). 268 Case and Reid, I. Am. Chem. Soc., 50, 3064 (1928). ²⁶⁹ Cornubert and Borrel. Bull. soc. chim. France, (4) 47, 307 (1930). ²⁷⁰ Comubert et al., Bull. soc. chim. France, (5e) 12, 371 (1945). ²⁷¹ King, Barltrop, and Walley, J. Chem. Soc., 279 (1945). ²⁷² Rydon, I. Chem. Soc., 1549 (1939). ²⁷³ Julian and Oliver, Org. Syntheses, Coll. Vol. II, 391 (1943). ²⁷⁴ Mercer, Robertson, and Cahn, J. Chem. Soc., 999 (1935). ²⁷⁵ Heilbron et al., J. Chem. Soc., 1338 (1931). 276 Ramart-Lucas and Labaune, Ann. chim., (10) 16, 295 (1931). ²⁷⁷ Mosettig and van de Kamp, J. Am. Chem. Soc., 55, 3445 (1933). ²⁷⁶ Dean, Dickinson, Quayle, and Lester, I. Am. Chem. Soc., 72, 1740 (1950). 279 Kolloff and Hunter, J. Am. Chem. Soc., 63, 492 (1941). 280 Strong and McElvain, J. Am. Chem. Soc., 55, 816 (1933). ²⁸¹ Campball et al., I. Am. Chem. Soc., 68, 1845 (1946). 282 Youtz and Perkins, J. Am. Chem. Soc., 51, 3514 (1929). 283 Ruggli and Gassenmeier, Helv. Chim. Acta, 22, 501 (1939). 284 Schechter, Green, and LaForge, J. Am. Chem. Soc., 71, 3165 (1949). 285 Ruzicka and Schinz, Helv. Chim. Acta, 23, 964 (1940). 286 Cope, Hoyle, and Heyl, J. Am. Chem. Soc., 63, 1843 (1941). ²⁸⁷ v. Braun and Rudolph, Ber., 67, 278 (1934).

#### REFERENCES FOR CHAPTER 10

288 McPhee and Klingsberg, J. Am. Chem. Soc., 66, 1132 (1944). 289 Becker, Helv. Chim. Acta, 32, 1584 (1949). 290 Sharp, Sutherland, and Wilson, J. Chem. Soc., 346 (1943). ²⁹¹ Anderson, Crawford, and Sherrill, J. Am. Chem. Soc.. 68, 1294 (1946). 292 Brown and Partridge, J. Am. Chem. Soc. 67, 1423 (1945). ²⁹³ Finkelstein and Elderfield, J. Org. Chem., 4, 371 (1939). 294 Howard and Fraser, Org. Syntheses, Coll. Vol. 1, 475 (1941). 295 Adickes and Andresen, Ann., 555, 41 (1943). ²⁹⁶ Huan, Bull. soc. chim. France, (5e) 5, 1341 (1938). 297 Gaubert, Linstead, and Rydon, J. Chem. Soc., 1977 (1937). 298 Ames and Bowman, J. Chem. Soc., 329 (1950). 299 Kögl, Halberstadt, and Barendregt, Rec. trav. chim., 68, 387 (1949). 300 Openshaw and Robinson, J. Chem. Soc., 944 (1937). ³⁰¹ Fieser et al., J. Am. Chem. Soc., 57, 1852 (1935); 58, 2320 (1936). 302 Friedmann, J. prakt. Chem., 146, 159 (1936). 303 Oldham and Ubbelohde, J. Chem. Soc., 201 (1939). 304 Bouveault and Bongert, Bull. soc. chim. France, (3) 27, 1038, 1046, 1088 (1902). 305 Bouveault and Locquin, Bull. soc. chim. France, (3) 31, 588, 1153 (1940). ³⁰⁶ Breslow et al., J. Am. Chem. Soc., 66, 1921 (1944). 307 Elderfield et al., J. Am. Chem. Soc. 69, 1258 (1947). 308 Mannick and Margotte, Ber., 68B, 278 (1935). 309 Elderfield et al., J. Am. Chem. Soc. 68, 1584 (1946). ³¹⁰ Jackman et al., J. Am. Chem. Soc., 70, 2884 (1948). ³¹¹ Jones et al., J. Am. Chem. Soc., 70, 2846 (1948). 312 Walker and Hauser, J. Am. Chem. Soc., 68, 1386 (1946); cf. ref. 313. ³¹³ Bowman, J. Chem. Soc., 322 (1950). ³¹⁴ Reynolds and Hauser, Org. Syntheses, 30, 70 (1950). ³¹⁵ Long and Troutman, J. Am. Chem. Soc., 71, 2473 (1949). ³¹⁶ Bowman. I. Chem. Soc., 325 (1950). ³¹⁷ Novce. I. Chem. Education, 26, 275 (1949). ³¹⁸ Sabatier and Mailhe, Compt. rend., 158, 831 (1914); Senderens, Ann. chim., (8) 28, 243-343 (1913). ³¹⁹ Herbst and Manske, Org. Syntheses, Coll. Vol. 11, 389 (1943). ³²⁰ Kistler, Swann, and Appel, Ind. Eng. Chem., 26, 388 (1934). ³²¹ Swann, Appel, and Kistler, Ind. Eng. Chem., 26, 1014 (1934). 322 Senderens, Bull. soc. chim. France, (4) 3, 824 (1908). 323 Perkins and Kenyon, J. Chem. Soc., 99, 57 (1911); 101, 629 (1912); 103, 1936 (1913). 324 Cowan, Jeffery, and Vogel, J. Chem. Soc., 171 (1940). 325 Krafft, Ber., 15, 1712 (1879). 326 Morgan and Holmes, J. Soc. Chem. Ind. (London), 44, 109T (1925). 327 Thorpe and Kon, Org. Syntheses, Coll. Vol. I, 192 (1941). 328 Curtis, Dobson, and Hatt, J. Soc. Chem. Ind. (London), 66, 402 (1947). ³²⁹ Dougherty, J. Am. Chem. Soc., 50, 571 (1928). 330 Hurd and Thomas, J. Am. Chem. Soc., 58, 1240 (1936). ³³¹ Miller, Cook, and Whitmore, J. Am. Chem. Soc., 72, 2732 (1950). 332 Wibaut et al., Rec. trav. chim., 58, 362 (1939). 333 Vogel, J. Chem. Soc., 912 (1931). 334 Henshall, I. Soc. Chem. Ind. (London), 62, 127 (1943). 335 Vogel, J. Chem. Soc., 2033 (1928).

336 Birch et al., J. Am. Chem. Soc., 71, 1362 (1949). 337 Winkler, Chem. Ber., 81, 258 (1948). 338 Maeder, Helv. Chim. Acta, 29, 124 (1946). 339 Webb and Webb, I. Am. Chem. Soc., 71, 2285 (1949). 340 Burger and Walter, J. Am. Chem. Soc., 72, 1988 (1950). 341 Yarnall and Wallis, J. Org. Chem., 4, 270 (1939). ³⁴² Newman and Magerlein in Organic Reactions, Vol. 5, John Wiley & Sons. New York, 1949, p. 421. 343 v. Braun and Kroper, Ber., 62, 2880 (1929); v. Braun and Teuffert, ibid., 62, 235 (1929). . 344 v. Braun, Ber., 67, 218 (1934); Newman, J. Am. Chem. Soc., 57, 732 (1935). 345 Rohrmann, Jones, and Shonle, J. Am. Chem. Soc., 66, 1856 (1944). 346 Nunn and Henze, I. Org. Chem., 12, 541 (1947). 347 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2098 (1936); Callen, Dornfeld, and Coleman, Org. Syntheses, 28, 6 (1948). 348 Bachmann, I. Am. Chem. Soc., 56, 1365 (1934). 349 Whitmore et al., J. Am. Chem. Soc., 67, 2059 (1945). 350 Sherk, Augur, and Soffer, J. Am. Chem. Soc., 67, 2239 (1945). 351 Blicke, J. Am. Chem. Soc., 49, 2847 (1927). 352 Gilman and Jacoby, J. Org. Chem., 3, 108 (1938). 353 Shriner and Turner, J. Am. Chem. Soc., 52, 1268 (1930). 354 Hauser, Humphlett, and Weiss, J. Am. Chem. Soc., 70, 426 (1948). 355 Pearson, J. Am. Chem. Soc., 72, 4169 (1950). 336 Hauser and Renfrow, I. Am. Chem. Soc., 59, 1823 (1937). 357 Rhinesmith, J. Am. Chem. Soc., 58, 596 (1936). 358 Kumler, Strait, and Alpen, J. Am. Chem. Soc., 72, 1463 (1950). 339 Alpen, Kumler, and Strait, J. Am. Chem. Soc., 72, 4560 (1950). 360 Baddeley and Kenner, J. Chem. Soc., 303 (1935). 361 Bachmann, Carlson, and Moran, J. Org. Chem., 13, 920 (1948). 362 Whitmore et al., I. Am. Chem. Soc., 69, 236 (1947). 363 Reeve and Adkins, J. Am. Chem. Soc., 62, 2874 (1940). 364 LaForge, I. Am. Chem. Soc., 50, 2477 (1928). 365 Frank and Weatherbee, J. Am. Chem. Soc., 70, 3482 (1948). 366 Vogel and Schinz, Helv. Chim. Acta, 33, 123 (1950). 367 Cagniant, Bull. soc. chim. France, (5) 16, 847 (1949). 368 Behrens et al., J. Am. Chem. Soc., 70, 2837 (1948). 369 Wilson and Henze, I. Am. Chem. Soc., 63, 2112 (1941). ³⁷⁰ Borsche and Herbert, Ann., 546, 297 (1941). ³⁷¹ Young, McKinnis, Webb, and Roberts, J. Am. Chem. Soc., 68, 295 (1946). 372 Ruggli and Hegedus, Helv. Chim. Acta, 25, 1292 (1942); Ruggli and Zeller, ibid. 28, 744 (1945). ³⁷³Henze and Rigler, J. Am. Chem. Soc., 56, 1350 (1934). 374 Barnes and Budde, J. Am. Chem. Soc., 68, 2339 (1946). ³⁷⁵ Wallace and Henze, I. Am. Chem. Soc., 64, 2882 (1942). ³⁷⁶ Henze et al., J. Am. Chem. Soc., 64, 1222 (1942). ³⁷⁷ Rigler and Henze, J. Am. Chem. Soc., 58, 474 (1936). 378 Henze, Benz, and Sutherland, J. Am. Chem. Soc., 71, 2122 (1949). ³⁷⁹ Elderfield, Pitt, and Wempen, J. Am. Chem. Soc., 72, 1334 (1950). 380 Whitney and Henze, J. Am. Chem. Soc., 60, 1148 (1938). 381 Cross and Henze, I. Am. Chem. Soc., 61, 2730 (1939). 382 Niemann, Benson, and Mead, J. Org. Chem., 8, 397 (1943).

383 Speer and Henze, J. Am. Chem. Soc., 61, 1226 (1939). 384 Rubin, Paist, and Elderfield, J. Org. Chem., 6, 260 (1941). 385 Bachmann and Ferguson, J. Am. Chem. Soc., 56, 2082 (1934). 386 Anderson et al., J. Am. Chem. Soc., 67, 2197 (1945). 387 Decombe, Ann. chim., (10) 18, 92 (1932). 388 Humphlett, Weiss, and Hauser, J. Am. Chem. Soc., 70, 4020 (1948). 389 Newman and Smith, J. Org. Chem., 13, 592 (1948). ³⁹⁰ Newman and Booth, J. Am. Chem. Soc., 67, 154 (1945). 391 Campaigne and Reid, J. Am. Chem. Soc., 68, 1663 (1946). 392 de Benneville, J. Org. Chem., 6, 462 (1941). 393 Ullyot et al., J. Org. Chem., 10, 440 (1945). 394 Weizmann et al., J. Chem. Soc., 1367, 1371 (1935). 395 Fieser and Daudt. 1. Am. Chem. Soc., 63, 785 (1941). 396 Kroeger and Nieuwland, J. Am. Chem. Soc., 58, 1861 (1936). 397 Nightingale and Wadsworth, J. Am. Chem. Soc., 67, 416 (1945). 398 Hopff, Nenitzescu, Isacesu, and Cantuniau, Ber., 69, 2249 (1936). 399 Hopff et al., Ber., 69B, 2249 (1936). 400 Cason, Chem. Revs., 40, 15 (1947). 401 Cason, J. Am. Chem. Soc., 68, 2078 (1946); cf. ref. 426. 402 Gilman and Nelson. Rec. trav. chim., 55, 520 (1936). 403 Bunnett and Tarbell, J. Am. Chem. Soc., 67, 1944 (1945). 404 Leslie and Henze, J. Am. Chem. Soc., 71, 3480 (1949). 405 Michael, J. Am. Chem. Soc., 41, 411 (1919). 406 Colonge and Joly. Ann. chim., (11) 18, 314 (1943). 407 Jones. J. Am. Chem. Soc., 69, 2350 (1947). 408 Schmidt and Shirley, J. Am. Chem. Soc., 71, 3804 (1949). 409 Badertscher and Whitmore, J. Am. Chem. Soc., 55, 1564 (1933). 410 Thoms, Arch. Pharm., 263, 246 (1925). ⁴¹¹ Whitmore et al., J. Am. Chem. Soc., 60, 2790 (1938). 412 Baker, J. Chem. Soc., 447 (1938). 413 Kadesch, J. Am. Chem. Soc., 66, 1211 (1944). 414 Whitmore, Whitmore, and Cook, J. Am. Chem. Soc., 72, 51 (1950). 415 Hurd and Kelso, J. Am. Chem. Soc., 62, 2184 (1940). 416 Cook and Percival. J. Am. Chem. Soc., 71, 4141 (1949). 417 Ford, Thompson, and Marvel, J. Am. Chem. Soc., 57, 2621 (1935). 418 Kohler and Baltzly. J. Am. Chem. Soc., 54, 4023 (1932). ⁴¹⁹ Stehman, Cook, and Whitmore, J. Am. Chem. Soc., 71, 1509 (1949). 420 Lester and Proffitt, J. Am. Chem. Soc., 71, 1877 (1949). 421 Kipnis and Omfelt, J. Am. Chem. Soc., 70, 3948 (1948). 422 Kantor and Hauser, J. Am. Chem. Soc., 72, 3290 (1950). 423 Pinson and Friess, J. Am. Chem. Soc., 72, 5333 (1950). 424 Hurd and Cohen, J. Am. Chem. Soc., 53, 1071 (1931). 423 McKennis and du Vigneaud, J. Am. Chem. Soc., 68, 832 (1946); cf. ref. 426. 426 Cason and Prout, Org. Syntheses, 28, 75 (1948). 427 Whitmore, Noll, and Meunier, J. Am. Chem. Soc., 61, 683 (1939). 428 Whitmore et al., J. Am. Chem. Soc., 60, 2462 (1938). 429 Jenkins, J. Am. Chem. Soc., 55, 703 (1933). 430 Jenkins. J. Am. Chem. Soc., 55, 1618 (1933). 431 Jenkins. J. Am. Chem. Soc., 56, 682 (1934). 432 Jenkins, J. Am. Chem. Soc., 55, 2896 (1933). 433 Montagne, Ann. chim., (10) 13, 53 (1930).

434 Whitmore and Sloat. I. Am. Chem. Soc., 64, 2969 (1942). 435 Hev. I. Chem. Soc., 1232 (1930). 436 Adams, Harfenist, and Loewe, J. Am. Chem. Soc., 71, 1628 (1949). 437 Kohler, Am. Chem. I., 38, 511 (1907). 438 Colonge, Bull. soc. chim. France, (5) 3, 413 (1936). 439 Colonge, Bull. soc. chim. France, (5) 2, 754 (1935). 440 Smith. Chase, and Rhodes. I. Am. Chem. Soc., 66, 1547 (1944). 441 Whitmore and Pedlow, J. Am. Chem. Soc., 63, 758 (1941). 442 Kohler, Am. Chem. I., 29, 352 (1902). 443 Newman and Farbman, J. Am. Chem. Soc., 69, 1550 (1944); Bachmann et al., 72. 1997 (1950). 444 Dice, Loveless, and Gates. I. Am. Chem. Soc., 71, 3546 (1949). 445 Newman and Booth, J. Org. Chem., 12, 737 (1947); Mueller and May, J. Am. Chem. Soc., 71, 3313 (1949). 446 Amold, Buckley, and Dodson, J. Am. Chem. Soc., 72, 3154 (1950). 447 Whitmore and Forster, J. Am. Chem. Soc., 64, 2967 (1942). 448 Sah, Rec. trav. chim., 59. 1025 (1940). 449 Braude and Coles, J. Chem. Soc., 2012 (1950). 450 Wieland, Chem. Ber., 81, 314 (1948). 451 Salkind and Beburuschwili, Ber., 42, 4500 (1909). 452 Hartman and Roll, Org. Syntheses, 23, 1 (1943). 453 Nightingale and Janes, J. Am. Chem. Soc., 66, 352 (1944). 454 St. Goldschmidt and Veer, Rec. trav. chim., 65, 796 (1946); Hey and Morris, J. Chem. Soc., 2319 (1948); Keagle and Hartung, J. Am. Chem. Soc., 68, 1608 (1946). 455 Hey and Morris, J. Chem. Soc., 48 (1948). 456 Freon, Ann. chim., (11) 11, 465 (1939). 457 Locquin, Bull. soc. chim. France, (3) 31, 1147 (1904). 458 Barry and Hartung, J. Org. Chem., 12, 460 (1947). 459 Sumerford and Dalton. I. Am. Chem. Soc., 66, 1330 (1944). 460 Marvel and Sperry, Org. Syntheses, Coll. Vol. I, 95 (1941). 461 Bigelow and Hanslick, Org. Syntheses, Coll. Vol. II, 244 (1943). 462 Wittig and Vidal, Chem. Ber., 81, 368 (1948). 463 Schmerling, J. Am. Chem. Soc., 68, 1650 (1946). 464 Adkins, Reactions of Hydrogen, U. of Wisconsin Press, 1937, p. 129. 465 Covert, Connor, and Adkins. J. Am. Chem. Soc., 54, 1658 (1932). 466 Covert and Adkins, J. Am. Chem. Soc., 54, 4116 (1932). 467 Powell and Secoy, J. Am. Chem. Soc., 53, 765 (1931). 468 Colonge, Bull. soc. chim. France, (4) 49, 444 (1931). 469 Vavon, Ann. chim., (9) 1, 144, 196 (1914); Skita, Ber., 43, 3393 (1910). 470 Adams, Voorhees, and Shriner, Org. Syntheses, Coll. Vol. I, 463 (1941). ⁴⁷¹Colonge, Bull. soc. chim. France, (4) 49, 441 (1931); (4) 41, 327 (1927); (5) 3, 416 (1936); (5) 6, 335, 342 (1939); Morgan and Hardy, J. Soc. Chem. Ind. (London), 11, 518 (1933); Thoms, Arch. Pharm., 263, 241 (1925); Powell, Murray, and Baldwin, J. Am. Chem. Soc., 55, 1153 (1933). 472 Haeussler and Dijkema, Ber., 77, 601 (1944). 473 Rupe and Willi, Helv. Chim. Acta, 15, 845 (1932). 474 Henze, Wilson, and Townley, J. Am. Chem. Soc., 65, 964 (1943). 475 Woods et al., J. Am. Chem. Soc., 71, 2028 (1949). 476 Dippy and Lewis, Rec. trav. chim., 56, 1000 (1937). 477 Raiford and Peterson, J. Org. Chem., 1, 549 (1937).

#### **REFERENCES FOR CHAPTER 10**

393

476 Berliner and Berliner, J. Am. Chem. Soc., 72, 222 (1950). 479 Metaver, Ann. chim., (12) 4, 201 (1949). 480 Bailey and Lutz, J. Am. Chem. Soc., 70, 2412 (1948). 481 Thompson, Org. Syntheses, 27, 21 (1947). 482 Pecherer, Jampolsky, and Wuest, J. Am. Chem. Soc., 70, 2587 (1948). 483 Stork and Foreman, J. Am. Chem. Soc., 68, 2173 (1946). 484 Papa, Schwenk, and Breiger, J. Org. Chem., 14, 366 (1949); Papa, J. Am. Chem. Soc., 71, 3246 (1949). 485 Adkins, Rossow, and Carnahan, J. Am. Chem. Soc., 70, 4247 (1948). 486 Cornforth. Cornforth, and Robinson, J. Chem. Soc., 690 (1942). 487 Sprague and Adkins, J. Am. Chem. Soc., 56, 2670 (1934). 488 Haller and Bauer. Ann. chim., (8) 29, 313 (1913); Nasarow, Ber., 70, 594 (1937). 489 Cornubert et al., Bull. soc. chim. France, (4) 49, 1260, 1498-1528 (1931); (5) 2, 195 (1935). 490 Chanley. 1. Am. Chem. Soc., 70, 244 (1948); Fischer and Wunderlich, Ber., 74, 1546 (1941). 491 Sobotka and Chanley, J. Am. Chem. Soc., 71, 4136 (1949). ⁴⁹²Colonge, Bull. soc. chim. France, (5e) 5, 99 (1938); cf. ref. 491. 493 Conia. Bull. soc. chim. France, (5) 17, 537 (1950). 494 Haller and Bauer. Ann. chim., (8) 28, 373 (1913). 495 Haller, Bull. soc. chim. France, (4) 31, 1073-1144 (1922). 496 Soffer et al., I. Am. Chem. Soc., 72, 3704 (1950). 497 Whitmore and Laughlin, J. Am. Chem. Soc., 55, 3732 (1933). 498 Haller. Ann. chim., (8) 29, 313 (1913). 499 Suter and Weston, J. Am. Chem. Soc., 64, 534 (1942). ⁵⁰⁰ Sprague, Beckman, and Adkins, J. Am. Chem. Soc., 56, 2665 (1934). ⁵⁰¹ Adkins, Kutz, and Coffman, J. Am. Chem. Soc., 52, 3218 (1930). ⁵⁰² Speck and Bost, J. Org. Chem., 11, 788 (1946). ⁵⁰³ Vanderwerf and Lemmerman, Org. Syntheses, 28, 8 (1948). ⁵⁰⁴Eisleb, Ber., 74, 1437 (1941). ⁵⁰⁵ Eistert in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 513. ⁵⁰⁶ Kohler et al., J. Am. Chem. Soc., 61, 1059 (1939). ⁵⁰⁷ Adamson and Kenner, J. Chem. Soc., 184 (1939). ⁵⁰⁰ Thomas, Campbell, and Hennion, *I. Am. Chem. Soc.*, 60, 719 (1938). 509 Schaad and Ipatieff, J. Am. Chem. Soc., 62, 178 (1940). ^{\$10}Leers. Bull. soc. chim. France, 39, 423 (1926). ⁵¹¹Hennion, Davis, and Maloney, J. Am. Chem. Soc., 71, 2813 (1949). ⁵¹² Moureu and Delange, Bull. soc. chim. France, (3) 29, 666 (1903). ⁵¹³Hill and Flosdorf, Org. Syntheses, Coll. Vol. I. 462 (1941). ⁵¹⁴ Emerson. J. Am. Chem. Soc., 69, 1212 (1947). ⁵¹⁵ Bachmann, Org. Syntheses, Coll. Vol. II, 73 (1943). ⁵¹⁶ Burger and Bennet, I. Am. Chem. Soc., 72, 5414 (1950). ⁵¹⁷ Bouveault and Locquin, Bull. soc. chim. France, (3) 35, 629-649 (1906); Leers, ibid. (4) 35, 597 (1924); (4) 39, 421, 423, 433, 655 (1926); Parry, J. Chem. Soc., 107, 108 (1915); Meerwein, Ann., 396, 201, 250 (1913). ⁵¹⁶ Kohler and Nygaard, J. Am. Chem. Soc., 52, 4133 (1930). ⁵¹⁹ Ballard and Dehn, J. Am. Chem. Soc., 54, 3969 (1932). ⁵²⁰ Jenkins, Buck, and Bigelow, J. Am. Chem. Soc., 52, 4495, 5198 (1930).

521 v. Wacek, Ber., 77B, 85 (1944).

⁵²² Evers et al., J. Am. Chem. Soc., 55, 1136 (1933). 523 Whitmore, Evers, and Rothrock, Org. Syntheses, Coll. Vol. II, 408 (1943). ⁵²⁴ Brown, J. Chem. Soc., 2577 (1949). 525 Bardan, Bull. soc. chim. France, (4) 49, 1426, 1551, 1875 (1931); (5) 1, 141 368, 370 (1934); Elphimoff-Felkin, ibid., (5) 17, 497 (1950). 526 Ramonczai and Vargha, J. Am. Chem. Soc., 72, 2737 (1950). 527 Bouveault, Bull. soc. chim. France, (3) 35, 629-649 (1906). ⁵²⁸ Delaby and Dumoulin, Bull. soc. chim. France, (4) 33, 602 (1923); (4) 39, 1583 (1923). 529 Alder and Schmidt, Ber., 76, 192 (1943). ⁵³⁰ Nenitzescu and Gavat, Ann., 519, 260 (1935). ⁵³¹ Rule and Thompson, J. Chem. Soc., 1762 (1937). ⁵³² Goldschmidt and Veer, Rec. trav. chim., 67, 504 (1948). ⁵³³ Man and Hauser, J. Am. Chem. Soc., 72, 3294 (1950). 514 Weiss and Hauser, J. Am. Chem. Soc., 71, 2023 (1949). ⁵³⁵ Frank and Phillips, *I. Am. Chem. Soc.*, 71, 2804 (1949). 536 Kharasch, Urry, and Kuderna, J. Org. Chem., 14, 248 (1949). ⁵³⁷ Wolfrom et al., J. Am. Chem. Soc., 65, 1516 (1943); 67, 1793 (1945); 71, 3509 (1949). 538 Truitt et al., J. Am. Chem. Soc., 71, 3511 (1949). 539 Whitmore and Randall, J. Am. Chem. Soc., 64, 1244 (1942). 540 Johnson and Degering, J. Org. Chem., 8, 10 (1943). ⁵⁴¹Levine, Conroy, Adams, and Hauser, J. Am. Chem. Soc., 67, 1510 (1945). 542 Adams and Hauser, J. Am. Chem. Soc., 67, 284 (1945); 66, 345 (1944). 543 Meerwein and Vossen, J. prakt. Chem., 141, 157 (1934). 344 Adams and Hauser, J. Am. Chem. Soc., 66, 1220 (1944). 545 Swamer and Hauser, J. Am. Chem. Soc., 72, 1352 (1950). ⁵⁴⁶ Denoon, Org. Syntheses, 20, 6 (1940). 547 Adkins and Rainey, Org. Syntheses, 20, 7 (1940). 548 Smith and King, I. Am. Chem. Soc., 65, 442 (1943). 549 Green and LaForge, J. Am. Chem. Soc., 70, 2287 (1948); cf. ref. 545. ⁵⁵⁰ Smith and Engelhardt, I. Am. Chem. Soc., 71, 2671 (1949). ⁵⁵¹ Allen, Abell, and Normington, Org. Syntheses, Coll. Vol. I, 205 (1941). ⁵⁵² Magnani and McElvain, Org. Syntheses, 20, 32 (1940). 553 Harris and Levine, J. Am. Chem. Soc., 71, 1120 (1949). 554 Harris and Levine, J. Am. Chem. Soc., 70, 3360 (1948). 555 Royals, J. Am. Chem. Soc., 67, 1508 (1945). 556 Dessert and Halverstadt, J. Am. Chem. Soc., 70, 2595 (1948). 557 Snyder, Brooks, and Shapiro, Org. Syntheses, Coll. Vol. II, 531 (1943). ⁵⁵⁸ Jackman, Bergman, and Archer, J. Am. Chem. Soc., 70, 499 (1948). 559 Elks, Elliott, and Hems, J. Chem. Soc., 629 (1944). 560 Reid and Calvin, J. Am. Chem. Soc., 72, 2948 (1950). ⁵⁶¹ Hesse and Bücking, Ann., 563, 31 (1949). 362 Hesse and Böckmann, Ann., 563, 37 (1949). 563 Frank and Varland, Org. Syntheses, 27, 91 (1947); Mowry and Ringwald, J. Am. Chem. Soc., 72, 2037 (1950). ⁵⁶⁴ Waitkins and Clark, Chem. Revs., 36, 235 (1945); Rabjohn in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 331. 565 Riebsomer, Chem. Revs., 36, 157 (1945). 566 Hatt, Pilgrim, and Hurran, J. Chem. Soc., 93 (1936). 567 Wegmann and Dahn, Helv. Chim. Acta, 29, 1248 (1946).

300 Weinstock and Fuson, J. Am. Chem. Soc., 58, 1233 (1936); Fuson and Hoch, ibid., 71, 1585 (1949). ⁵⁶⁹ Rauh, Smith, Banks, and Diehle, J. Org. Chem., 10, 199 (1945). ⁵⁷⁰ Harr, Voter, and Banks, J. Org. Chem., 14, 836 (1949). ⁵⁷¹ Teeters and Shriner, J. Am. Chem. Soc., 55, 3026 (1933). 572 Astin, Newman, and Riley, J. Chem. Soc., 391 (1933); ref. 573. 573 Müller. Ber., 66, 1668 (1933). 574 Chakravarti and Swaminathan, J. Indian Chem. Soc., 11, 715 (1934); C. A., 29. 1080 (1935). 575 Dox, Org. Syntheses, Coll. Vol. 1, 266 (1941). 576 Coles, Manske, and Johnson, J. Am. Chem. Soc., 51, 2269 (1929). ³⁷⁷ Postowsky and Lugowkin, Ber., 68, 852 (1935). 578 Killian, Hennion, and Nieuwland, J. Am. Chem. Soc., 56, 1786 (1934). ⁵⁷⁹ Muller and Krauss, Monatsh., 61, 206 (1932). 580 Franke, Kroupa, and Schmid, Monatsb., 66, 412 (1935). 581 Cason, J. Org. Chem., 13, 227 (1948). 582 Yale, J. Am. Chem. Soc., 69, 1547 (1947). 583 Mattar, Hastings, and Walker, J. Chem. Soc., 2455 (1930). 584 Shriner and Todd, Org. Syntheses, Coll. Vol. II, 200 (1943). 505 Erickson and Kitchens, J. Am. Chem. Soc., 68, 492 (1946). 586 Woodward and Blout. 1. Am. Chem. Soc., 65, 562 (1943). 587 Vincent, Thompson, and Smith, J. Org. Chem., 3, 606 (1939). 388 Frank and Hall, J. Am. Chem. Soc., 72, 1645 (1950). 589 Lutz and Wilder, J. Am. Chem. Soc., 56, 978 (1934). ⁵⁰⁰ Hunsdiecker, Ber., 75B, 452 (1942). ⁵⁹¹ Young and Allen, Org. Syntheses, Coll. Vol. II, 219 (1943); note 2. ⁵⁹² Ruggli and Zaeslin, Helv. Chim. Acta, 18, 848 (1935). 593 Kharasch, McBay, and Urry, J. Am. Chem. Soc., 70, 1269 (1948). ⁵⁹⁴ Saunders, Org. Syntheses, 29, 1 (1949). ⁵⁹⁵ Kimel and Cope, J. Am. Chem. Soc., 65, 1992 (1943). ⁵⁹⁶ Frank, Armstrong, Kwiatek, and Price, J. Am. Chem. Soc., 70, 1379 (1948). ⁵⁹⁷ Pines and Ipatieff, J. Am. Chem. Soc., 69, 1337 (1947). ⁵⁹⁸ Gaddis and Butz, J. Am. Chem. Soc., 69, 1203 (1947). ⁵⁹⁹ Catch et al., *I. Chem. Soc.*, 278 (1948). 600 Cardwell and McQuillin, J. Chem. Soc., 714 (1949); cf. ref. 599. 601 Slanina, Hennion, and Nieuwland, J. Am. Chem. Soc., 58, 891 (1936). ⁶⁰² Blatt in Organic Reactions, Vol. 1, John Wiley & Sons, New York, Chapter 11: Blatt, Chem. Revs., 27, 413 (1940). 603 Tarbell and Fanta, J. Am. Chem. Soc., 65, 2169 (1943). 604 Ralston, McCorkle, and Baurer, J. Org. Chem., 5, 645 (1940). 605 Miller and Hartung, Org. Syntheses, Coll. Vol. II, 543 (1943). 606 Smith and Opie, J. Org. Chem., 6, 427 (1941). 607 Amin and Shah, Org. Syntheses, 28, 42 (1948). 608 Carter in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 198. 609 Buck and Ide, Org. Syntheses, Coll. Vol. II, 55 (1943). ⁶¹⁰ Herbst and Shemin, Org. Syntheses, Coll. Vol. II, 1, 519 (1943). 611 Buck and Ide. J. Am. Chem. Soc., 54, 3307 (1932). 612 Buck. Baltzly. and Ide, J. Am. Chem. Soc., 60, 1789 (1938). ⁶¹³ Johnson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942,

p. 253.

⁶¹⁴ Hauser and Hudson in Organic Reactions, Vol. 1. John Wiley & Sons, New York, 1942, p. 266. ⁶¹⁵ Shivers, Dillon, and Hauser, *I. Am. Chem. Soc.*, **6**9, 119 (1947); Hamell and Levine, 1. Org. Chem., 15, 162 (1950). 616 Royals, I. Am. Chem. Soc., 70, 489 (1948). 617 Flovd and Miller, J. Am. Chem. Soc., 69, 2354 (1947). ⁶¹⁸ Cox and McElvain, Org. Syntheses, Coll. Vol. 11, 272 (1943); Steck, Hallock, and Holland, J. Am. Chem. Soc., 68, 131 (1946). 619 Shivers, Hudson, and Hauser. 1. Am. Chem. Soc., 65, 2051 (1943). 620 Abramovitch and Hauser, 1. Am. Chem. Soc., 64, 2271 (1942). 621 Inglis and Roberts, Org. Syntheses, Coll. Vol. 1, 235 (1941). 622 Hauser and Walker, I. Am. Chem. Soc., 69, 295 (1947). 623 Hudson and Hauser, J. Am. Chem. Soc., 63, 3156 (1941). 624 Friedman and Kosower, Org. Syntheses, 26, 42 (1946). 625 Albertson, I. Am. Chem. Soc., 70, 669 (1948). 626 Frostick and Hauser, J. Am. Chem. Soc., 71, 1350 (1949). 627 Pinkney, Org. Syntheses, Coll. Vol. II, 116 (1943). 628 Zanetti and Beckmann, J. Am. Chem. Soc., 50, 1438 (1928). 629 Barger, Robinson, and Smith, J. Chem. Soc., 721 (1937). 630 Gilman and Broadbent, J. Am. Chem. Soc., 70, 2755 (1948); Bloom, Breslow, and Hauser, ibid., 67, 2206 (1945). 631 Shriner and Schmidt. 1. Am. Chem. Soc., 51, 3636 (1929). 632 Shriner, Schmidt, and Roll, Org. Syntheses, Coll. Vol. II. 266 (1943). 633 Jackman, Bergman, and Archer, J. Am. Chem. Soc., 70, 499 (1948). 634 Hunsdiecker, Ber., 75B, 447, 455, 460 (1942). 635 Soloway and LaForge. J. Am. Chem. Soc., 69, 2677 (1947). 636 McElvain and Weber, Org. Syntheses, 23, 35 (1943). 637 Bouveault and Locquin, Bull. soc. chim. France, (5) 31, 388 (1940). 638 Spassow, Org. Syntheses, 21, 46 (1941). 639 Coulson, I. Chem. Soc., 1409 (1934). 640 Cardwell, I. Chem. Soc., 719 (1949). 641 Newman and Walborsky, J. Am. Chem. Soc., 72, 4296 (1950). 642 Renfrow and Renfrow. J. Am. Chem. Soc., 68, 1801 (1946). 643 Bartlett and Bavley, J. Am. Chem. Soc., 60, 2416 (1938). 644 Folkers and Adkins, J. Am. Chem. Soc., 53, 1416 (1931). 645 Marvel and Hager. Org. Syntheses, Coll. Vol. I, 248 (1941). 646 Breslow and Hauser, J. Am. Chem. Soc., 62, 2611 (1940). 647 Adams, Levine, and Hauser, Org. Syntheses, 27, 35 (1947). 648 Bowden, I. Am. Chem. Soc., 60, 131 (1938). 649 Wallingford, Thorpe, and Homeyer, J. Am. Chem. Soc., 64, 580 (1942). 650 Miller, Dessert, and Anderson, J. Am. Chem. Soc., 70, 500 (1948). 651 Breslow, Baumgarten, and Hauser, J. Am. Chem. Soc., 66, 1286 (1944). 652 Riegel and Lilienfeld, J. Am. Chem. Soc., 67, 1273 (1945). 653 Hauser and Renfrew, Org. Syntheses, Coll. Vol. II, 268 (1943). 654 Lund, Ber., 67, 935 (1934). 655 Hunter and Hogg, J. Am. Chem. Soc., 71, 1924 (1949). 656 von Doering and Wiberg, J. Am. Chem. Soc., 72, 2608 (1950). 657 Froning and Hennion, J. Am. Chem. Soc., 62, 653 (1940). 658 Bloom and Hauser, I. Am. Chem. Soc., 66, 152 (1944). 659 Dorsch and McElvain, J. Am. Chem. Soc., 54, 2960 (1932). 660 Julian et al., Org. Syntheses, Coll. Vol. II, 487 (1943).

#### **REFERENCES FOR CHAPTER 10**

661 Wiley and Adkins. I. Am. Chem. Soc., 60, 914 (1938). 662 Long. 1. Am. Chem. Soc., 69, 990 (1947). 663 Abramovitch and Hauser. J. Am. Chem. Soc., 64, 2720 (1942). 664 Kroeker and McElvain. J. Am. Chem. Soc., 56, 1172 (1934). 665 Milas et al., I. Am. Chem. Soc., 70, 1602 (1948). 666 Shriner in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942. p. 9. 667 Livingston, J. Am. Chem. Soc., 69, 1220 (1947). 668 Wash, Shive, and Lochte, J. Am. Chem. Soc., 63, 2975 (1941). 669 Johns and Burch, J. Am. Chem. Soc., 60, 919 (1938). 670 Groggins and Newton, Ind. Eng. Chem., 22, 157 (1930). 671 Adams. Chiles. and Rassweiler, Org. Syntheses, Coll. Vol. I, 10 (1941). 672 Winterfeld and Rönsberg, Arch. Pharm., 274, 40 (1936). 673 Young et al., J. Am. Chem. Soc., 72, 3635 (1950). 674 Bergmann and Sulzbacher. J. Org. Chem., 15, 918 (1950). 675 Nickels and Heintzelman, J. Org. Chem., 15, 1142 (1950). 676 Shapiro. 1. Org. Chem., 15, 1030 (1950). 677 Hauser and Humphlett, J. Org. Chem., 15, 359 (1950). 678 Dauben and Tilles, J. Org. Chem., 15, 785 (1950). 679 Hass. Susie, and Heider, I. Org. Chem., 15, 10 (1950). 680 Schultz and Mickey, Org. Syntheses, 29, 38 (1949). 661 Colonge and Pichat, Bull. soc. chim. France, (5) 16, 177, 853 (1949). 662 Dornow, Kuhlcke, and Baxmann, Chem. Ber., 82, 254 (1949). 663 Kaufmann and Adams. J. Am. Chem. Soc., 45, 3043 (1923). 684 Helberger. Ann., 529, 214 (1937). 685 Kloetzel and Wildman, J. Org. Chem., 11, 391 (1946). 686 Hatt, Pilgrim, and Stephenson, J. Chem. Soc., 481 (1941). 687 Cook. J. Chem. Soc., 1091 (1930). 668 Adams, Kern, and Shriner, Org. Syntheses, Coll. Vol. I, 101 (1941); cf. ref. 465. 689 Leonard, Herbrandson, and Van Heyningen, J. Am. Chem. Soc., 68, 1281 (1946). 690 Kuick and Adkins, J. Am. Chem. Soc., 57, 143 (1935). 691 Sauer. Org. Syntheses, 31, 68 (1951) including note 5. ⁶⁹² Cornforth. Org. Syntheses, 31, 59 (1951). ⁶⁹³ Djerassi in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951.

p. 207.

694 Cannon, Ellis, and Leal, Org. Syntheses, 31, 74 (1951).

237. Oxidation of Phenols, Aminophenols, and Aryl Diamines

 $p-HOC_6H_4OH \xrightarrow{(O)} O = C_6H_4 = O$ 

Derivatives of phenol or aniline can be oxidized to quinones, the yield and ease of oxidation depending on the substituents. If an amino or hydroxyl group is in the *para* position, the reaction proceeds readily, as illustrated by the synthesis of quinone from hydroquinone by oxidation with a sodium chlorate-vanadium pentoxide mixture (96%)⁷ or with chromicsulfuric acid mixture (92%).¹³ A *para* halogen atom usually has a favorable effect. Any group in the *para* position is eliminated or oxidized. o-Quinones are usually prepared from the corresponding catechols. A survey of procedures for the synthesis of benzoquinones by oxidation has been made.³⁵

Polymethylquinones and certain polycyclic quinones are prepared by the oxidation of aminophenols and their polycyclic analogs. The latter substances are readily obtained by coupling the corresponding phenolic compound with diazotized sulfanilic acid followed by a reductive cleavage of the azo compound.



Oxidation of the crude aminophenol is carried out with chromic acid^{14,15} or manganese dioxide.¹⁷ The over-all yields are good (50-90%). For the preparation of 1,2-naphthoquinone, ferric chloride is a milder and a better oxidant than chromic acid (94%).²¹ Similarly, diamines are oxidized with ferric chloride, as in the synthesis of duroquinone (90%).²⁰

238. Oxidation of 2-Hydroxy-1,4-naphthoquinones



The conversion of 2-hydroxy-3-alkyl-1,4-naphthoquinones by the action of alkaline permanganate into the next lower homolog has been extensively studied.³³ A modified procedure involves the treatment of the naphthoquinone with hydrogen peroxide in dioxane-soda solution followed

### 11

### Quinones

#### CONTENTS

METHOD	PAGE
236. Oxidation of Aromatic Hydrocarbons	398
237. Oxidation of Phenols, Aminophenols, and Aryl Diamines	399
238. Oxidation of 2-Hydroxy-1,4-naphthoquinones	399
239. Alkylation of Ouinones	400
240. Quinones by Ring Closure	400
Table 40. Quinones	402
References	403

#### 236. Oxidation of Aromatic Hydrocarbons



Polycyclic quinones are prepared by careful oxidation of the corresponding hydrocarbons with chromic-sulfuric acid mixture in acetic acid solution or as an agitated aqueous suspension, e.g., 2,3-dimethyl-1,4naphthoquinone (80%),¹ 9,10-phenanthroquinone (80%),² and acenaphthenequinone (60%).⁴ A laboratory reactor has been described in which an acetic acid solution of chromic acid and another solution of hydrocarbon are mixed as a film at 90°. The reaction mixture is then fed into water to prevent further oxidation. By this procedure, the yield of 2-methyl-1,4-naphthoquinone has been raised from 29% by the usual process to 45%.^{5,6}

Other oxidizing agents have been used. Sodium chlorate with vanadium pentoxide catalyst attacks anthracene readily but is not powerful enough for the conversion of hydrocarbons of the naphthalene and phenanthrene series.^{7,8} An acetic acid solution of 30% hydrogen peroxide has also been used.^{9,10}

#### 399

#### QUINONES

Ch. 11

by the action of copper sulfate and alkali on an intermediate acid (93% over-all). It has been established that the hydroxyl and alkyl groups change places in the course of the oxidation. The method has been found valuable in the synthesis of certain homologs difficult to obtain by direct alkylation (method 239).³²

239. Alkylation of Quinones



Diacyl peroxides are good agents for the alkylation of *p*-benzo- and 1,4-naphthoquinones having a free position in the quinoid ring, particularly when the normal- or iso-alkyl chains are desired (30-60%).^{11, 32} The method has been widely applied in the synthesis of 2-hydroxy-1,4-naphthoquinones substituted in the 3-position. The procedure consists in adding slowly a solution of the diacyl peroxide in ether to a solution of the quinone in acetic acid at 90-95°.

Alkyl groups in the low-molecular-weight range are also introduced by heating the quinone with the corresponding acid, excess red lead, and a promoter, which is a compound containing an active hydrogen, such as malonic ester or acetoacetic ester.¹²

240. Quinones by Ring Closure



The intramolecular condensation of o-aroylbenzoic acids in the presence of concentrated sulfuric acid gives substituted anthraquinones. The acid strength, reaction temperature, and period of heating are carefully controlled to insure optimum yields and to avoid sulfonation products.^{22,23} Boric acid has been added as a sulfonation inhibitor.²² Substitution in the *para* position of the aroyl group leads to 2-alkyl-,²³ 2-chloro-,²⁵ and 2-bromo-anthraquinones.²⁶

A number of anthraquinones have been synthesized by adding dienes to aroylacrylic acids, dehydrogenating the adducts in the form of the esters, and cyclizing as before.²⁷







The diene synthesis^{28, 30} with quinones is valuable in providing hydroaromatic systems which are readily dehydrogenated, as illustrated by the synthesis of 2,3-dimethylanthraquinone (90% over-all).²⁹



The synthesis has been adapted to the preparation of 1,2-naphthoquinone and its derivatives by an improved procedure.³⁰

400

#### OUINONES

Ch. 11

C _n	Compound	Method	Yield (%)	Chapterref.	(M.p.)
C ₆	Benzoquinone	237	96	117	(112)
	•	237	92	1113	
	Chlorobenzoguinone	237	92	11 ⁸	(54-64)
	Bromobenzoquinone	237	94	11 ⁸	(56)
с.	Methylbenzoguinone	237	90	11 ⁸	(69)
с,	œ Xyloguinone	237	62	11 17	(57.5)
		237	75 t	1114	(75)
	p-Xyloguinone	237	81 †	1119	(124)
	p,	237	40	11 18	(125)
с.	Trimethylbenzoguinone	237	95t	1114	(26)
C9	4,7-Hydrindenequinone	237	93	11,17	(205)
<b>C</b>	Duroquinone	237	90	11 ²⁰	(110)
C 10	Duroquinone	237	60 t	1114	(112)
	1.2-Naphthoguinone	237	94	1121	(147)
	1.4-Naphthoguinone	237	81	1116	(125)
	-, · · · · · · · · · · · · · · · · · · ·	240	88	11 ³⁰	(124)
	1.2.3.4-Tetrahydro-5.8-naphthoguinone	237	60 t	1117	(56)
	2-Chloro-1.4-naphthoguinone	66	75 t	11 ³⁰	(118)
	2-Hydroxy-1, 4-naphthoguinone	97	46 1	11 31	(192)
		240	95	11 ³⁰	(196)
с.,	2-Methyl-1.4-naphthoguinone	236	29	115	(106)
- 11	, _ , _ , _ , _ , _ , _ , _ , _ ,	236	45	11. ⁶	(105)
С.,	2-Ethyl-1, 4-naphthoguinone	236	39	115	(87)
- 12	2.3-Dimethyl-1.4-naphthoquinone	236	78	119	(127)
	,	236	80	111	(127)
	Acenaphthenequinone	236	60	114	(245)
Cu	2-Methyl-3-ethyl-1,4-naphthoquinone	239	41	1112	(73)
Си	1, 2-Phenanthraquinone	237	96 <b>†</b>	1115	(222)
	9,10-Phenanthraquinone	236	80	112	(207)
	9,10-Anthraquinone	236	91	118	(275)
	a-Chloroanthraquinone		98	11 34	(160)
	$\beta$ -Chloroanthraquinone	240	99	11 26	(209)
	$\beta$ -Bromoanthraquinon e	240	95	1125	(209)
	eta-Aminoanthraquinon e	240	96	11 <b>25</b>	(306)*
		435	97	1136	
Cıs	eta-Methylanthraquinone	240	90	11 23	(174)
C 16	2, 3-Dimethylanthraquinone	240	96	11 <b>29</b>	(210)
C 18	eta-t-butylanthraquinone	240	75	11 24	(104)
C 22	2,3-Diphenyl-1,4-naphthoquinone	236	50	11 ³	(139)

For explanations and symbols see pp. xi-xii.

#### **REFERENCES FOR CHAPTER 11**

#### **REFERENCES FOR CHAPTER 11**

¹Smith and Webster, J. Am. Chem. Soc., 59, 662 (1937). ²Linstead et al., I. Am. Chem. Soc., 64, 1998, 2023 (1942); Moore and Hunt-

ress, ibid., 49, 1328 (1927); Steck and Day, ibid., 65, 454 (1943).

³ Crawford and Nelson, J. Am. Chem. Soc., 68, 134 (1946).

⁴ Maxwell and Allen, Org. Syntheses, 24, 1 (1944).

⁵ Fieser et al., J. Am. Chem. Soc., 61, 3218 (1939); Sah, Rec. trav. chim., 59, 1027 (1940).

⁶ Veldstra and Wiardi, Rec. trav. chim., 62, 82 (1943).

⁷ Underwood and Walsh, Org. Syntheses, Coll. Vol. II, 553 (1943).

⁸ Underwood and Walsh, J. Am. Chem. Soc., 58, 646 (1936); cf. ref. 7.

⁹ Arnold and Larson, J. Org. Chem., 5, 250 (1940).

¹⁰ Green span, Ind. Eng. Chem., 39, 848 (1947).

¹¹ Fieser and Oxford, J. Am. Chem. Soc., 64, 2060 (1942).

¹² Fieser and Chang, J. Am. Chem. Soc., 64, 2043 (1942).

¹³ Vliet, Org. Syntheses, Coll. Vol. I, 482 (1941).

¹⁴Smith et al., J. Org. Chem., 4, 318 (1939).

¹⁵ Fieser, J. Am. Chem. Soc., 51, 1900 (1929).

¹⁶ Fieser, Org. Syntheses, Coll. Vol. I, 383 (1941).

¹⁷ Arnold and Zaugg, J. Am. Chem. Soc., 63, 1317 (1941); Emerson and Smith, *ibid.*, 62, 141 (1940).

¹⁸ James, Snell, and Weissberger, J. Am. Chem. Soc., 60, 2084 (1938).

¹⁹ Smith and Nichols, J. Am. Chem. Soc., 65, 1742 (1943); cf. ref. 14.

²⁰ Smith, Org. Syntheses, Coll. Vol. II, 254 (1943); Smith and Denyes, J. Am. Chem. Soc., 58, 304 (1936).

²¹ Fieser, Org. Syntheses, Coll. Vol. II, 430 (1943).

²² Groggins and Newton, Ind. Eng. Chem., 22, 157 (1930).

²³ Fieser, Org. Syntheses, Coll. Vol. I, 353 (1941).

²⁴ Peters and Rowe, J. Chem. Soc., 181 (1945).

²⁵ Groggins, Stirton, and Newton, Ind. Eng. Chem., 23, 893 (1931).

²⁶ Groggins and Newton, Ind. Eng. Chem., 21, 369 (1929).

²⁷ Fieser and Fieser, J. Am. Chem. Soc., 57, 1679 (1935).

²⁸ Butz and Rytina in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 136.

²⁹ Allen and Bell, Org. Syntheses, 22, 37 (1942).

³⁰ Fieser, J. Am. Chem. Soc., 70, 3165 (1948).

³¹ Fieser and Martin, Org. Syntheses, 21, 56 (1941).

³² Fieser et al., J. Am. Chem. Soc., 70, 3174 (1948).

³³ Fieser and Fieser, J. Am. Chem. Soc., 70, 3215 (1948).

³⁴ Scott and Allen, Org. Syntheses, Coll. Vol. II, 128 (1943).

³⁵Cason in Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, pp. 305-361.

³⁶ Groggins, Stirton, and Newton, Ind. Eng. Chem., 23, 893 (1931).