

PII: S0960-894X(96)00599-9

SYNTHESIS AND BIOLOGICAL EVALUATION OF 14-ALKOXYMORPHINANS. 14.¹ 14-ETHOXY-5-METHYL SUBSTITUTED INDOLOMORPHINANS WITH δ OPIOID RECEPTOR SELECTIVITY

Helmut Schmidhammer,*# Dietmar Daurer and Martina Wieser Institute of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Krisztina Monory and Anna Borsodi Institute of Biochemistry, Biological Research Center Szeged, P. O. B. 521, H-6701 Szeged, Hungary

Jackie Elliott and John R. Traynor* Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U. K.

Abstract: The 5-methyl and 14-ethoxy substituted analogues (compounds 2 - 4) of the δ opioid receptor antagonist naltrindole showed similar selectivity when compared with the reference drug. Compound 2 was a δ receptor antagonist in the mouse vas deferens preparation (MVD) exhibiting considerably higher selectivity ratios than naltrindole, while compound 4 was found to be a full and potent δ receptor agonist in the MVD. © 1997, Elsevier Science Ltd. All rights reserved.

Naltrindole (NTI; 1) is a non-peptidic δ opioid receptor antagonist which is widely employed.²⁻⁴ Interestingly, this compound exhibits potent immunosuppressive effects.⁵⁻⁷ The conformationally constrained indolic benzene moiety is suggested as a key "address" component affording selectivity by increasing δ -affinity and reducing affinity for μ and κ opioid receptor sites.³ In an attempt to improve on the selectivity of naltrindole, to develop potent δ agonists and to uncover structure-activity relationships in this series of compounds we decided to prepare indolomorphinans with a 14-alkoxy substituent and a 5-methyl substituent, from the corresponding morphinan-6-ones by Fischer indole synthesis. 14-Alkoxy substituents on morphinans are reported to improve receptor affinity providing potent agonists or antagonists depending on the substituent at the nitrogen.⁸ Many of these compounds interact preferentially with μ opioid receptors (e.g. the μ -selective opioid receptor antagonist cyprodime⁹ and derivatives^{10,11}).

Indolomorphinans 2 and 3 were prepared from the μ opioid antagonists 14-O-ethyl-5-methylnaltrexone (5) and 14-O-ethyl-5-methylnaloxone (6)¹², respectively, while the potential δ agonist 4 was prepared from the

[#] E-mail: Helmut.Schmidhammer@uibk.ac.at; fax: (0043)512-507-5257

highly potent μ agonist 14-ethoxymetopon (7).^{13,14} The indolomorphinans¹⁵ 2¹⁶, 3¹⁷ and 4¹⁸ were obtained from the corresponding morphinan-6-ones (5, 6 and 7) by reaction with phenylhydrazine hydrochloride (Scheme).

The biological properties of synthesized compounds were performed using radioligand binding assays (rat brain homogenates) and bioassays (guinea-pig ileum myenteric plexus preparation (GPI) and mouse vas deferens preparation (MVD)). The binding affinities of $2 \cdot \text{HCl}$, $3 \cdot \text{HCl}$ and 4 were assessed in homogenates of rat brain in Tris·HCl buffer (50 mM, pH 7.4)¹⁴ employing [³H]DIDI^{19,20} (δ agonist), [³H]anltrindole (NTI; δ antagonist), [³H]DAMGO (μ agonist) and [³H]U69593 (κ agonist) as radioligands (Table 1). The ligand binding results confirm the selectivity of naltrindole for δ opioid receptors and show that the inclusion of 5-methyl and 14-ethoxy groups do not greatly alter δ -selectivity, though a slightly different selectivity is seen for each compound.

Compounds 2·HCl and 4 were tested in the bioassay preparations which were performed as described previously.²¹⁻²² EC₅₀ values were determined from concentration-effect curves. Compounds were tested for antagonism by the ability to shift the dose-effect curve for standard opioid agonists to the right. Where shifts were seen apparent equilibrium dissociation constants for the antagonists (K_e values) were determined by the single-dose method,²²⁻²⁴ using dose-ratios determined at the EC₅₀ points. K_e values were calculated to allow for direct comparison with K_i values determined from ligand-binding assays. Compound 2.HCl was a potent δ opioid

Cpd.	K_{j} (nM) ± SEM					selectivity ratio ^{a)}	
	³ Η]DIDI (δ)	[³ H]NTI (δ)	[³ H]DAMGO(μ)	[³ H]U69593 (κ)	μ/δ	κ/δ	
2	14.00 ± 9.51	0.78 ± 0.16	38.70 ± 8.70	59.20 ± 10.00	50	76	
3	$\textbf{29.90} \pm \textbf{2.34}$	10.80 ± 1.55	667.00 ± 203.00	765.00 ± 465.00	62	71	
4	8.81 ± 2.51	5.75 ± 1.29	715.00 ± 107.00	286.00 ± 101.00	124	50	
NTI (1)	0.09 ± 0.03	0.33 ± 0.19	30.40 ± 0.69	$14.00 \pm 3.00^{\text{b}}$	92	42	

Table 1: Opioid Receptor Binding of Compounds 2, 3 and 4.

a) The K_i values against [³H]NTI were used for the calculation of the selectivity ratios.

b) |³H|CI977 was used as κ ligand.

receptor antagonist in the MVD. This compound was about 10-fold weaker than naltrindole, but exhibited considerably higher selectivity ratios (μ/δ and κ/δ) than naltrindole (Table 2). DPDPE was used as the standard δ agonist, but since this is a putative δ_1 receptor preferring agonist the putative δ_2 preferring agonist deltorphin II was also used. However a similar antagonist equilibrium constant (K_e) for 2 (1.6 ± 0.2 nM) was obtained. These K_e values of 2 at the δ receptor are in line with the affinity of 2 determined in binding assays against the antagonist [³H]naltrindole rather than determined against the agonist [³H]DIDI. Compound 2.HCl showed only very weak agonism in either the GPI or the MVD affording just 32% and 23% inhibition of the electrically evoked twitch respectively at 10 μ M. In contrast, compound 4 was a full agonist in the MVD (EC₅₀ 104 ± 33 nM, n = 3), but in the GPI, which contains μ and κ receptors, but not δ receptors, 4 was a very weak agonist affording 21.0 ± 12% (n = 3) inhibition of twitch height at 10 μ M. This indicates that the agonist action of this compound in the MVD is likely to be mediated purely through an action at δ receptors.

Table 2: Antagonist K_e Values of Compound $2 \cdot HCl$ and Naltrindole Determined in the Mouse Vas Deferens Preparation (MVD)

	K	selectivity ratio			
Compound	DPDPE (δ)	DAMGO(µ)	CI977 (ĸ)	μ/δ	κ/δ
2 ⋅HCl	1.3 ± 0.3	133 ± 42	529 ± 92	102	455
NTI (1)	0.18 ± 0.02	5.25 ± 0.68	32.4 ± 1.1	29	178

a) $K_e = |antagonist|/DR - 1$, where DR is dose ratio (i. e. ratio of equiactive concentrations of the test agonist in the presence and absence of the antagonist).

H. SCHMIDHAMMER et al.

The results show that introduction of a 5-methyl and a 14-ethoxy group onto the selective δ antagonist naltrindole does not greatly alter the ligand binding profile of the compound for δ , μ and κ receptors, except where $[^{3}H]DIDI$, rather than $[^{3}H]$ naltrindole, is used as the labelled ligand. The reason for the markedly higher affinity of **2**.HCl when measured against the antagonist $|^{3}H|$ naltrindole is unknown. However, since $|^{3}H|$ DIDI being an agonist would be expected to label agonist affinity states of the receptor then the results suggest that compound 2 has a preference for δ -antagonist binding. This would confirm the antagonist nature of the compound, though it is usual for antagonists to have similar affinity when determined against both agonist and antagonists.^{25,26} Alternatively the difference may be caused by some additional selectivity by virtue of the additional groups on 2, although the N-cyclopropylmethyl group seems essential to see this difference. Indeed, replacement of the N-cyclopropylmethyl group with N-allyl (compound 3) or with N-Me (compound 4) does lead to a considerable reduction (approximately 20-fold) in affinity at all three receptor sites, indicating an important role for the cyclopropylmethyl group in binding. [³H]DIDI is a deltorphin analogue reported to have preference for the δ_2 site²⁰ and thus the results may indicate that 2 does have some preference for δ_1 over δ_2 sites. On the other hand the K_e value obtained for compound 2 in bioassay in the MVD was similar using both DPDPE (δ_1 preferring) and deltorphin II (δ_2 preferring) as agonists. The lack of differentiation in this tissue would be expected, however, since previous studies do suggest the MVD contains a single δ opioid receptor type.^{24,27,28}

In marked contrast to the cyclopropylmethyl (1 and 2) and N-allyl (3) analogues the N-Me analogue (4) is a potent δ agonist showing full agonism in the MVD preparation. Previously synthesized compounds of the naltrindole type (e. g. oxymorphindole) only show partial agonism in the MVD³ and although the novel structure BW373U86 is a full agonist in the MVD it also acts as an agonist in the GPI, although 700-times higher concentrations are needed.²⁹

In conclusion, replacement of the 5-H and 14-OH functions in naltrindole with Me and ethoxy groups, respectively, improves the δ -selectivity of the antagonist in bioassay preparations. Furthermore, replacement of the N-cyclopropylmethyl group with N-Me affords a change in efficacy resulting in a compound with good potent δ agonist properties in the MVD, but without appreciable μ agonist properties.

Acknowledgement

We wish to thank Prof. Dr. K.-H. Ongania (Institute of Organic Chemistry, University of Innsbruck) for performing the mass spectra and Mag. A. Willeit (Institute of Pharmaceutical Chemistry) for recording the ¹H NMR spectra. The work was in part supported by the Austrian Science Foundation (project P8879-CHE) and the Wellcome Trust (JE and JRT).

References and Notes

 Part 13 of this series: Schmidhammer, H.; Hrovat, G.; Riess, M.; Ungerank, C.; Monory, K.; Borsodi, A. Sci. Pharm. 1996, 64, 655.

- 2. Portoghese, P. S.; Sultana, M.; Nagase, H.; Takemori, A. E. J. Med. Chem. 1988, 31, 281.
- 3. Portoghese, P. S.; Sultana, M.; Takemori, A. E. J. Med. Chem. 1990, 33, 1714.
- 4. Takemori, A. E.; Portoghese, P. S. Annu. Rev. Pharmacol. Toxicol. 1992, 32, 239.
- 5. Arakawa, K.; Akami, T.; Okamoto, M.; Oka, T., Nagase, H.; Matsumoto, S. Transplantation 1992, 53, 951.
- 6. Arakawa, K.; Akami, T.; Okamoto, M.; Nakajima, H.; Mitsuo, M.; Naka, I.; Oka, T.; Nagase, H. Transplant Proc. 1992, 24, 696.
- Arakawa, K.; Akami, T.; Okamoto, M.; Akioka, K.; Akai, I.; Oka, T.; Nagase, H. *Transplant Proc.* 1993, 25, 738.
- 8. Schmidhammer, H. Current Topics in Med. Chem. 1993, 1, 261.
- 9. Schmidhammer, H.; Burkard, W. W.; Eggstein-Aeppli, L.; Smith, C. F. C. J. Med. Chem. 1989, 32, 418.
- Schmidhammer, H.; Smith, C. F. C.; Erlach, D.; Koch, M.; Krassnig, R.; Schwetz, W.; Wechner, C. J. Med. Chem. 1990, 33, 1200.
- Schmidhammer, H. Jennewein, H. K., Krassnig, R.; Traynor, J. R.; Patel, D.; Bell, K.; Froschauer,
 G.; Mattersberger, K.; Jachs-Ewinger, C.; Jura, P.; Fraser, G. L.; Kalinin, V. N. J. Med. Chem. 1995, 38, 3071.
- Schmidhammer, H.; Schratz, A.; Schmidt, C.; Patel, D.; Traynor, J. R. Helv. Chim. Acta 1993, 76, 476.
- 13. Schmidhammer, H.; Schratz, A.; Mitterdorfer, J. Helv. Chim. Acta 1990, 73, 1784.
- Fürst, Zs.; Búzás, B.; Friedmann, T.; Schmidhammer, H.; Borsodi, A. Eur. J. Pharmacol. 1993, 236, 209.
- 15. All new compounds gave satifactory elemental analyses.
- 16. 2·HCl: mp > 260 °C (dec.); IR (KBr): 3200 (+NH, NH, OH) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ
 11.34, 9.21 and 8.55 (3 s, +NH, NH, OH), 7.32 (m, 2 arom. H), 7.08 (dd, J = 8.1, 8.1 Hz, 1 arom. H), 6.94 (dd, J = 8.1, 8.1 Hz, 1 arom. H), 6.62 (d, J = 8.2 Hz, 1 arom. H), 6.55 (d, J = 8.2 Hz, 1 arom. H), 1.86 (s (CH₃-C(5)), 1.01 (t, J = 6.8 Hz, 3 H, CH₃CH₂O); Cl-MS: m/z 457 (M⁺+1).
- 17. **3** · HCl: mp 168-170 °C; IR (KBr): 3200 (+NH, OH) cm⁻¹; ¹H-NMR (300 MHz, CD₃OD): δ 7.39 (dd, J = 7.8, 7.8 Hz, 2 arom. H), 7.14 (dd, J = 7.8, 7.8 Hz, 1 arom. H), 7.01 (dd, J = 7.8, 7.8 Hz, 1 arom. H), 6.67 (s, 2 arom. H), 6.02 (m, 1 olef. H), 5.75 (m, 2 olef. H), 1.99 (s, CH₃-C(5)), 1.09 (t, J = 6.8 Hz, 3 H, CH₃CH₂O); CI-MS: m/z 443 (M⁺+1).
- 4: mp 165-167 °C; IR (KBr): 3285 (NH, OH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.15 (br s, NH, OH), 7.35 (d, J = 8 Hz, 1 arom. H), 7.26 (d, J = 8 Hz, 1 arom. H), 7.13 (dd, J = 8, 8 Hz, 1 arom. H), 7.01 (dd, J = 8, 8 Hz, 1 arom. H), 6.64 (d, J = 8.2 Hz, 1 arom. H), 6.55 (d, J = 8.2 Hz, 1 arom. H), 2.40 (s, CH₃N), 1.94 (s, CH₃-C(5)), 1.02 (t, J = 7 Hz, 3 H, CH₃CH₂O); CI-MS: m/z 417 (M⁺+1).
- 19. Sasaki, Y.; Ambo, A.; Suzuki, K. Biochem. and Biophys. Res. Comm. 1991, 180, 822.
- 20. Nevin, S. T.; Kabasakal, L.; Ötvös, F.; Tóth, G.; Borsodi, A. Neuropeptides 1994, 26, 261.
- 21. Rogers, H.; Hayes, A. G.; Birch, P. J.; Traynor J. R.; Lawrence, A. J. J. Pharm. Pharmacol. 1990, 42, 358.
- 22. Traynor, J. R.; Corbett, A. D.; Kosterlitz, H. W. Eur. J. Pharmacol. 1987, 137, 85.

- 23. Kosterlitz, H. W.; Watt, A. J. Br. J. Pharmacol. 1968, 33, 266.
- 24. Elliott, J.; Traynor, J. R. Br. J. Pharmacol. 1995, 114, 1064.
- 25. Carroll, J, A.; Shaw, J. S.; Wickenden, A. D. Br. J. Pharmacol. 1988, 94, 625.
- 26. Van Gelderen, J. G.; Daeffler, L.; Scherrer, D.; Mousli, M.; Landry, Y.; Gies, J. P. J. Receptor and Signal Tranduction Research 1996, 16, 135.
- 27. Franklin, T. G.; Traynor, J. R. Mol. Neuropharmacol. 1992, 1, 187.
- Wild, K. D.; Carlisi, V. J.; Mosberg, H. I.; Bowen, W. D.; Portoghese, P. S.; Sultana, M.; Takemori, A. E.; Hruby, V. J.; Porreca, F., J. Pharmacol. Exp. Ther. 1993, 264, 831.
- 29. Chang, K. J.; Rigdon, G. C.; Howard, J. L.; McNutt, R. W. J. Pharmacol. Exp. Ther. 1993, 267, 852.

(Received in Belgium 16 September 1996; accepted 5 December 1996)