stemmed from the fact that the psychotogens \(d\)-lysergic acid diethylamide, bufotenine, yohimbine, and adrenochrome contain an indole ring. To explain the psychotomimetic activity of \(\beta\)-phenethylamines such as mescaline (I), amphetamine, and 3,4,5-trimethoxyamphetamine in terms of this hypothesis, it would be necessary that these substances be capable of undergoing oxidative cyclization, \textit{in vivo}, to the corresponding indoles. Opposed to this generalization is the fact that a number of indoles which are closely related to \(d\)-lysergic acid diethylamide (\textit{e.g.} 2-bromo-\(d\)-lysergic acid diethylamide) fail to show psychotomimetic activity.\(^9\) If these concepts are meaningful, it would be reasonable to expect that either 5,6,7-trimethoxyindole (III) or 5,6,7-trimethoxy-2,3-dihydroindole (II) would show psychotomimetic activity under proper physiological conditions.

The synthesis of the hitherto unknown indole (III) presented unexpected difficulties. Only one of seven alternate routes explored was found to be practical. The critical step in several of these routes was the introduction of a nitro group into the 2-position of a suitably \(1\)-substituted-3,4,5-trimethoxybenzene. Finally, this step was solved when conditions were found for the nitration of 3,4,5-trimethoxy-\(\beta\)-nitrostyrene in acetic anhydride in 9% yield. Reductive cyclization of this compound to 5,6,7-trimethoxyindoline (III) was accomplished with iron powder and acetic acid in a manner similar to that described by Ek and Witkop.\(^1^6\) Although the biological evaluation of this compound will require various pharmacological tests, preliminary results, involving the intravenous injection of large doses in cats, which show a dramatic reaction to mescaline, indicate that III is without observable action in terms of changes in behavior or brain oxygen tension. Further biological studies of the action of both II and III at appropriately selected metabolic sites will be necessary in order to ascertain whether mescaline acts through these indole intermediaries.

The synthesis of II is currently underway, since this compound would presumably be the primary \textit{in vivo} oxidative cyclization product of mescaline.

EXPERIMENTAL\(^1^3\)

2-Nitro-3,4,5-trimethoxy-\(\beta\)-nitrostyrene. A precooled solution \((-8^\circ)\) of 7.9 g. of 3,4,5-trimethoxy-\(\beta\)-nitrostyrene in 40 ml. of acetic anhydride was rapidly stirred during the dropwise addition of 5 ml. of red fuming nitric acid. The temperature of the nitration mixture was maintained at \(-7^\circ\) to \(-8^\circ\) during this phase of the reaction. Following the addition of the nitric acid, the nitration mixture was stirred for an additional 20 min. and then poured onto 200 ml. of an ice water mixture. Solid sodium carbonate was then added to the mixture to hasten the hydrolysis of the acetic anhydride. The crude precipitated nitro compound was collected on a filter, carefully washed with water and then recrystallized from aqueous ethanol. There was obtained 0.8 g. (9.4%) of 2-nitro-3,4,5-trimethoxy-\(\beta\)-nitrostyrene, m.p. 177-178\(^\circ\), as yellow needles.

Anal. Calcd. for \(C_{10}H_{12}N_2O_7\): C, 46.5; H, 4.22; N, 9.55. Found: C, 46.7; H, 4.06; N, 9.56.

5,6,7-Trimethoxyindole (III). A solution of 2.5 g. of 2-nitro-3,4,5-trimethoxy-\(\beta\)-nitrostyrene in 18 ml. of ethanol was reduced with 8.8 g. of iron powder and 18 ml. of glacial acid in accordance with the procedure of Ek and Witkop.\(^1^6\) After treating the reaction mixture with a solution of sodium bisulfite in 220 ml. of water, the crude indole was extracted with five portions of ether. Evaporation of the ether gave 1.4 g. of oily crude product which was taken up in a filter, carefully washed with water and then recrystallized from aqueous ethanol. There was obtained 0.8 g. (9.4%) of 2-nitro-3,4,5-trimethoxy-\(\beta\)-nitrostyrene, m.p. 177-178\(^\circ\), as yellow needles.

The ultraviolet spectrum in methanol-1-propanol showed \(\lambda_{\text{max}}\) (log \(e\)) 268 (3.52); 1287 (3.34). The synthesis of II is currently underway, since this compound would presumably be the primary \textit{in vivo} oxidative cyclization product of mescaline.

Mesaline Analogs. VII. 3,4,5-Trimethyl-\(\beta\)-phenethylamine

F. Benington,\(^1\) R. D. Mohr,\(^1\) and Leland C. Clark, Jr.\(^2\)

Received August 27, 1956

A mescaline analog in which each of the methoxyl groups at the 3,4, and 5-positions is replaced by methyl has not been reported previously. The synthesized compound, \(3,4,5\)-trimethylamine, was found to possess the same \textit{in vivo} effects as mescaline, indicating that the trimethoxy group is not essential for the psychotomimetic activity of mescaline.
effect of replacement of alkoxyl by methyl or ethyl has been studied in the case of the 2,4,6-substituted phenethylamines, but all compounds in this series produced marked differences in their effect on respiratory enzymes present in brain homogenates than did compounds substituted in the 3,4- or 3,4,5-positions. Accordingly, 3,4,5-trimethyl-β-phenethylamine should provide a more reliable indication of the change in psychoneurochemical activity brought about by replacement of methoxyl by methyl in the mesocaine nucleus.

The key reaction in the synthesis of 3,4,5-trimethyl-β-phenethylamine was the isomerization of 2,4,6-trimethylacetophenone, readily obtained by Friedel-Crafts acetylation of mesitylene, to 3,4,5-trimethylacetophenone by heating with anhydrous aluminum chloride. Transformation of the acetyl group to the β-aminomethyl side-chain was readily accomplished via the Kindler modification of the Willgerodt reaction. Conversion of the 3,4,5-trimethylphenylacetic acid so obtained to the corresponding amide, and reduction with lithium aluminum hydride, afforded the desired 3,4,5-trimethyl-β-phenethylamine. This route to β-phenethylamines is convenient when the corresponding acetophenones are available and is worthy of further exploitation.

Results of the physiological evaluation of 3,4,5-trimethyl-β-phenethylamine will be published elsewhere.

EXPERIMENTAL

3,4,5-Trimehtylphenylacetothiomorpholide. 2,4,6-Trimehtylacetophenone, b.p. 109–110°/9 mm., was obtained in 88% yield by the action of acetic anhydride on mesitylene in the presence of anhydrous aluminum chloride. Transformation of the acetyl group to the β-aminomethyl side-chain was accomplished as described by heating a mixture of 71 g. of 2,4,6-trimethylacetophenone with 116 g. of anhydrous aluminum chloride at 170° for 1.5 hr.; yield, 56.6 g. (80%) of a pale yellow oil, b.p. 135–140°/12 mm.

This route to 3,4,5-trimethylacetophenone was contamined with 1.8% of the 3,4,6-trimethylacetophenone, b.p. 149–150°/12 mm. A mixture of 49.6 g. of 3,4,5-trimethylacetophenone, 39 g. of redistilled morpholine, and 14.4 g. of sulfur was refluxed for 12 hr. The warm reaction mixture was poured into 175 ml. of hot ethanol and allowed to cool to permit the product to crystallize; yield, 20.6 g. (79%) of 3,4,5-trimethylacetothiomorpholide, m.p. 120–122°, sufficiently pure for the next step. A sample recrystallized from ethanol melted at 125–126°.

Acidification with dilute hydrochloric acid gave 30 g. (88%) of 3,4,5-trimethylphenylacetic acid sufficiently pure for the next step. A sample recrystallized from benzene-petroleum ether melted at 125–126°.

Anal. Caled. for C14H10NO: C, 74.6; H, 8.5; N, 7.9. Found: C, 74.4; H, 8.6; N, 7.9.

3,4,5-Trimehtyl-β-phenethylamine. To a stirred suspension of 8.6 g. of lithium aluminum hydride in 500 ml. of absolute ether, was added a solution of 10 g. of 3,4,5-trimethylphenylacetamide in 600 ml. of boiling reagent benzene, using additional hot benzene to redissolve material which crystallized during the addition. The reaction mixture was stirred and refluxed for 22 hr. and then hydrolyzed by cautious addition of water and 10% sulfuric acid. A white solid insoluble in both the ether and aqueous layers was formed and collected by filtration. This material proved to be the insoluble sulfate of 3,4,5-trimethyl-β-phenethylamine contaminated with aluminum salts. Upon heating with concentrated hydrochloric acid, the crude product dissolved, and the hydrochloride of 3,4,5-trimethyl-β-phenethylamine crystallized in the form of colorless lustrous plates on cooling. The yield was 10.1 g. (89%), m.p. 249–250° after recrystallization from methanol-ethyl acetate.

NOTES

A Convenient Synthesis of m-Anisidine

PANKAJA K. KADABA AND SAMUEL P. MASSIE

Received July 16, 1956

In studies on the preparation of ring derivatives of phenothiazines beginning with the corresponding anilines, m-anisidine was required. This compound is not commercially available, in spite of its relative importance as a starting material, particularly in the synthesis and degradative studies of some indole alkaloids, notably harmine and reserpine. The conventional method of preparing m-