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Abstract: Acetoacetates, easily prepared from substituted p-quinols, undergo a mild room temperature 
Carroll rearrangement to afford substituted arylacetones and related derivatives in moderate to good 
yields. 

The Carroll rearrangement, 1 a variant to the ester Claisen rearrangement, 2 is a useful method for 

preparing ~,,&unsaturated ketones (2) from allylic acetoacetates (Scheme 1). The reaction has found limited 

use in synthetic organic chemistry, 3 probably because of the harsh thermal conditions (130 - 220°C) needed 

to induce the [3,3] sigmatropic rearrangement. However, these thermal barriers are lowered through 

modifications to the starting [3-keto-ester (1). Wilson and Price 4 and others 5 conducted the rearrangement of 

keto-ester bis-enolates (i.e. 3; X = Li) in refluxing THF while Gilbert and Kelly 6 effected a room 

temperature rearrangement of the silyl ketene acetal analog (i.e. 4; X = TMS). We now report that allylic 

acetoacetates prepared from p-quinols 7 undergo a surprisingly facile room temperature Carroll 

rearrangement under neutral conditions to provide substituted arylacetone derivatives in moderate to good 

yields. 8 

Scheme 1 
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We found that reaction of p-quinol  5a with diketene and a catalytic amount of 4- 

dimethylarninopyridine (DMAP) at room temperature 9 produces the trisubstituted arylacetone 8 in a 72% 

isolated yield along with minor amounts of benzofuran 9. Monitoring this reaction by 1H NMR (300 MHz, 

CDC13), we observed the instantaneous and quantitative formation of acetoacetate 6a (82%) and its enol 

tautomer 6b (18%). Within several hours, the reaction produces arylacetone 8 as the major product (Scheme 

2). The presumed keto-acid intermediate 7 was not observed, most likely due to a rapid 

aromatization/decarboxylation. 
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We examined a variety of substituted p-quinols. Table 1 summarizes our initial results. 10 A typical 
procedure involves adding a catalytic amount of DMAP (2 mol %) to a stirring mixture of p-quinol and 
diketene (1.1-1.4 equiv) in CH2C12 at room temperature. Isolation and purification of the products consists 
of simply removing the solvent in vacuo followed by recrystallization or chromatography. 
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In general, good overall yields of rearrangement products are realized. However, a steric component to 

the methodology was encountered with sterically congested p-quinols. For example, with p-quinol 5h, in 

which the acetoacetate moiety is flanked by two methyl substituents, none of the expected rearrangement 

The simple p-quinol 5a and the symmetrical 3,5-dimethyl p-quinol 5b led to good yields of 

rearrangement products. A good overall yield was also obtained using the 3-methyl substituted p-quinol So, 

though regiochemical competition between the termini resulted in a 1.3:1 ratio of isomeric arylacetones 12 

and 13. To gain further insight into the effect of substitution at the termini on the rearrangement, we treated 

the 2,6-disubstituted quinols 5d and 5e with diketene and a catalytic amount of DMAP and found the 

rearrangement still took place to generate the 1,4-diketones 14 and 15 in excellent yields, respectively. Thus, 

in addition to the successful generation of the 1,4-diketone functionality, the rearrangement allows an 

effective introduction of a quaternary carbon center. 11 Further regiochemical competition was examined 

with the 2-methyl and 2,5-dimethyl quinols 5f and 5g. A 10:1 mixture of arylacetone 16 and the 1,4- 

diketone 17 was obtained from 5f, while the disubstituted quinol 5g led to 5:2:1 mixture of arylacetone 19, 

benzofuran 20, and the 1,4-diketone 21. The regiochemical competition observed between the termini 

parallels that found in the Claisen rearrangement. 12, 2c-d Interestingly, we also isolated the 

cycloheptadienones 1813 and 22 from the reactions involving p-quinols 5f and 5g. Mechanistically, these 

products may be viewed as arising from the initial Carroll rearrangement to the substituted terminus followed 

by ring expansion 14 involving a norcaradiene-like intermediate (Scheme 3). 



3599 

Table 1. Carrol l  R e a r r a n g e m e n t  of  Substituted p - Q u i n o l s  

O 
X1 - , , ~  X2 ) 

DMAP 
[acetoacetate] 

[3,3] 
,- Products 

5a; 
Xl,  x2  = H 
YI, Y 2 = H  

R = C - - C - P h  

5b; 
X1, X 2 = H  
YI, V 2 = M e  

R =  C = C - P h  

5e; 
XI, X2 = H 

Y1 = Me; Y2 = H 
R =  C - - C - P h  

XI, X2 = Me 
Y1, Y2 = H 

5 d ; R  = C --=C-Ph 
5e; R = Ph 

5f; 
Xt = Me; X2 = H 

Yb Y2 = H 
R =  C~=C-Ph 

5g; 
X1 = Me; X2 = H 
Y1 = H; Y2 = Me 

R =  C = C - P h  

5h; 
XI, X2= H 
YI, Y2 = Me 

R =Ph 

OH 

8 (72°/o) 9 

R 

(5%) 

OH 

. ~ - ~ O  10 a (71%) O ~ , ~  R 

R 

11 (16°/.) 

OH OH 

12 (41°/o) 13 b (31°/o) 

R R 

O 

" ~ / ~ O  14; R = C~C-Ph (87%) 
15; R = Ph (83%) 

OH 0 

(30%) (3%) 

R R 

H-'O~ 
18 

R (300/0) 

OH 0 

R 19 c (3o%) 20 (11°o) a 21 
H•R 

(6*/o) 22 (3oo/.) 

No rearrangement 

a) Exists as a 55:45 mixture of  ring-chain tautomers in CDCI3. 
b) Exists as a 66:33 mixture of  ring-chain tautomers in CDCI3. 
c) Exists as a 77:23 mixture offing-chain tautomers in CDCI3. 
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product was found, even upon heating to 75 °C. The failure of 5h to rearrange may be explained by severe 

steric crowding experienced within the developing transition state 15 between the phenyl group and the two 

adjacent methyl groups. In comparison, this steric interaction apparently is lessened in the transition state for 

quinol 5b by having the acetylene group act as a spacer and thus allow the phenyl group to avoid the 

adjacent methyl groups. 

ro . 
10 "~" [ p h ~  C 

0 o r o~.~ 7 

j 
5 h steric crowding 

In summary, the reaction of substituted p-quinols with diketene and a catalytic amount of DMAP 

affords acetoacetylated p-quinols which undergo facile [3,3] sigmatropic rearrangements at room 

temperature to generate substituted arylacetones and related derivatives in moderate to good yields. 
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