

0040-4039(95)00602-8

The Carroll Rearrangement: A Facile Entry into Substituted Arylacetones and Related Derivatives

Kirk L. Sorgi,* Lorraine Scott, and Cynthia A. Maryanoff

Chemical Development Department The R. W. Johnson Pharmaceutical Research Institute Spring House, PA 19477 USA

Abstract: Acetoacetates, easily prepared from substituted *p*-quinols, undergo a mild room temperature Carroll rearrangement to afford substituted arylacetones and related derivatives in moderate to good yields.

The Carroll rearrangement,¹ a variant to the ester Claisen rearrangement,² is a useful method for preparing γ .8-unsaturated ketones (2) from allylic acetoacetates (Scheme 1). The reaction has found limited use in synthetic organic chemistry,³ probably because of the harsh thermal conditions (130 - 220°C) needed to induce the [3,3] sigmatropic rearrangement. However, these thermal barriers are lowered through modifications to the starting β -keto-ester (1). Wilson and Price⁴ and others⁵ conducted the rearrangement of keto-ester bis-enolates (i.e. 3; X = Li) in refluxing THF while Gilbert and Kelly⁶ effected a room temperature rearrangement of the silyl ketene acetal analog (i.e. 4; X = TMS). We now report that allylic acetoacetates prepared from *p*-quinols⁷ undergo a surprisingly facile room temperature Carroll rearrangement under neutral conditions to provide substituted arylacetone derivatives in moderate to good yields.⁸

Scheme 1

We found that reaction of p-quinol 5a with diketene and a catalytic amount of 4dimethylaminopyridine (DMAP) at room temperature⁹ produces the trisubstituted arylacetone 8 in a 72% isolated yield along with minor amounts of benzofuran 9. Monitoring this reaction by ¹H NMR (300 MHz, CDCl₃), we observed the instantaneous and quantitative formation of acetoacetate 6a (82%) and its enol tautomer 6b (18%). Within several hours, the reaction produces arylacetone 8 as the major product (Scheme 2). The presumed keto-acid intermediate 7 was not observed, most likely due to a rapid aromatization/decarboxylation. We examined a variety of substituted *p*-quinols. Table 1 summarizes our initial results.¹⁰ A typical procedure involves adding a catalytic amount of DMAP (2 mol %) to a stirring mixture of *p*-quinol and diketene (1.1-1.4 equiv) in CH₂Cl₂ at room temperature. Isolation and purification of the products consists of simply removing the solvent in vacuo followed by recrystallization or chromatography.

The simple *p*-quinol 5a and the symmetrical 3,5-dimethyl *p*-quinol 5b led to good yields of rearrangement products. A good overall yield was also obtained using the 3-methyl substituted *p*-quinol 5c, though regiochemical competition between the termini resulted in a 1.3:1 ratio of isomeric arylacetones 12 and 13. To gain further insight into the effect of substitution at the termini on the rearrangement, we treated the 2,6-disubstituted quinols 5d and 5e with diketene and a catalytic amount of DMAP and found the rearrangement still took place to generate the 1,4-diketones 14 and 15 in excellent yields, respectively. Thus, in addition to the successful generation of the 1,4-diketone functionality, the rearrangement allows an effective introduction of a quaternary carbon center.¹¹ Further regiochemical competition was examined with the 2-methyl and 2,5-dimethyl quinols 5f and 5g. A 10:1 mixture of arylacetone 16 and the 1,4-diketone 17 was obtained from 5f, while the disubstituted quinol 5g led to 5:2:1 mixture of arylacetone 19, benzofuran 20, and the 1,4-diketone 21. The regiochemical competition observed between the termini parallels that found in the Claisen rearrangement.^{12, 2c-d} Interestingly, we also isolated the cycloheptadienones 18¹³ and 22 from the reactions involving *p*-quinols 5f and 5g. Mechanistically, these products may be viewed as arising from the initial Carroll rearrangement to the substituted terminus followed by ring expansion¹⁴ involving a norcaradiene-like intermediate (Scheme 3).

In general, good overall yields of rearrangement products are realized. However, a steric component to the methodology was encountered with sterically congested p-quinols. For example, with p-quinol **5h**, in which the acetoacetate moiety is flanked by two methyl substituents, none of the expected rearrangement

Table 1. Carroll Rearrangement of Substituted p-Quinols

a) Exists as a 55:45 mixture of ring-chain tautomers in CDCl₃.
b) Exists as a 66:33 mixture of ring-chain tautomers in CDCl₃.
c) Exists as a 77:23 mixture of ring-chain tautomers in CDCl₃.

product was found, even upon heating to 75 °C. The failure of **5h** to rearrange may be explained by severe steric crowding experienced within the developing transition state¹⁵ between the phenyl group and the two adjacent methyl groups. In comparison, this steric interaction apparently is lessened in the transition state for quinol **5b** by having the acetylene group act as a spacer and thus allow the phenyl group to avoid the adjacent methyl groups.

In summary, the reaction of substituted p-quinols with diketene and a catalytic amount of DMAP affords acetoacetylated p-quinols which undergo facile [3,3] sigmatropic rearrangements at room temperature to generate substituted arylacetones and related derivatives in moderate to good yields.

Acknowledgments. We are very grateful to Dr. Gregory Leo for NMR spectroscopic analysis.

References and Notes

- 1. (a) Carroll, M. F. J. Chem. Soc. 1940, 704, 1266; Ibid. 1941, 507. (b) Kimel, W.; Cope, A. C. J. Am. Chem. Soc. 1943, 65, 1992.
- (a) Claisen, L. Chem. Ber. 1912, 45, 3157. (b) Rhoads, S. J.; Raulins, N. R. Org. Reactions 1975, 22, 1. (c) Ziegler, F. E. Acc. Chem. Res. 1977, 10, 227. (d) Ziegler, F. E. Chem. Rev. 1988, 88, 1423.
- 3. Clemens, R. J. Chem. Rev. 1986, 86, 241 and references therein.
- 4. Wilson, S. R.; Price, F. M. J. Org. Chem. 1984, 49, 722.
- 5. (a) Snider, B. B.; Beal, R. B. J. Org. Chem. 1988, 53, 4508. (b) Echavarren, A. M.; de Mendoza, J.; Prados, P.; Zapata, A. Tetrahedron Lett. 1991, 32, 6421.
- 6. Gilbert, J. C.; Kelly, T. A. Tetrahedron 1988, 44, 7587.
- Preparation of p-quinols from benzoquinones see; (a) Fischer, A.; Henderson, G. N. Tetrahedron Lett. 1980, 21, 701. (b) Liotta, D.; Saindane, M.; Barnum, C. J. Org. Chem. 1981, 46, 3369. (c) Cherry, D. A.; Maryanoff, C. A.; Mills, J. E.; Olofson, R. A.; Rodgers, J. D. U.S. Patent 4,798,893, 1985.
- 8. A facile room temperature Claisen rearrangement has been observed in similar systems. See; Swenton, J. S.; Bradin, D.; Gates, B. D. J. Org. Chem. 1991, 56, 6156.
- 9. Use of dimethylaminopyridine as an acetoacetylation catalyst has been reported. See ref. 3 and Nudelman, A.; Kelner, R.; Broida, N.; Gottlieb, H. E. Synthesis 1989, 387.
- 10. Satisfactory ¹H and ¹³C NMR, IR, and mass spectroscopic data were obtained for all new compounds.
- 11. See reference 4 for similar introduction of quaternary carbon centers.
- (a) Cresson, P.; Lecour, L. C.R. Seances Acad. Sci., Ser. C, 1966, 262, 1157. (b) Cresson, P.; Bancel, S. Ibid. 1968, 266, 409. (c) Bancel, S.; Cresson, P. Ibid. 1969, 268, 1535.
- Cycloheptadienone 18; ¹H NMR (360 MHz, CDCl₃) δ 2.13 (s, 3H), 2.21 (s, 3H), 2.78 (dd, J = 12.1, 5.8 Hz, 1H), 3.09 (dd, J = 12.1, 8.0 Hz, 1H), 6.03 (dd, J = 8.0, 6.0 Hz, 1H), 6.29 (s, 1H), 7.31-7.35 (m, 2H), 7.41-7.45 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 25.1 (CH₃), 25.4 (CH₃), 39.3 (CH₂), 88.1 (Cq), 89.0 (Cq), 113.4 (Cq), 123.0 (Cq), 123.3 (Cq), 127.3 (CH), 128.1 (CH), 128.2 (CH), 128.3 (CH), 131.5 (CH), 136.2 (Cq), 190.0, 190.5; HRMS (M⁺) m/z calcd for C₁₈H₁₆O₂ 264.1150, found 264.1135. Further studies concerning the structure analysis of 18 will be reported in detail at a later date.
- 14. For a similar ring expansion see: Kogler, H.; Fehlhaber, H-W.; Leube, K.; Dürckheimer, W. Chem Ber. 1989, 122, 2205.
- 15. Preliminary AM1 calculations show the boat and chair-like transition states involving the acetoacetate intermediate to be of near equal energies.

(Received in USA 8 February 1995; revised 21 March 1995; accepted 28 March 1995)