Tetrahedron Letters, Vol. 26, No. 30, pp 3567-3570, 1985 ## ASYMMETRIC SYNTHESIS IV¹. PREPARATION OF CHIRAL α-AMINONITRILES FROM A NEW N-CYANOMETHYL-1,3-OXAZOLIDINE SYNTHON José L. Marco, Jacques Royer and Henri-Philippe Husson ## Abstract: The synthesis of (-)-N-cyanomethyl-4-phenyl-1,3-oxazolidine $\underline{1}$ is reported. Good yiélds and moderate diastereomeric excesses (d.e.s.) of mono- and di-substituted α -aminonitriles were obtained from this simple chiral template. The preparation of optically active amines, aminoalcohols and aminoacids, because of their potential biological properties, is an important problem in synthetic chemistry. α -Aminonitriles are attractive starting materials for these syntheses if one considers that they include three reactive centers. Although the anions of N-dialkylaminoacetonitriles have been used, they have mainly been considered as masked acyl fonctions and not for preparing α -substituted aminonitriles. Thus chiral α -mono substituted aminonitriles, which are key intermediates in the preparation of aminoacids have been synthesized from aldehydes or related derivatives α . We now report the synthesis of an unsubstituted α -aminonitrile $\underline{1}$ bearing a 1,3-oxazolidine chiral moiety $\underline{4}$ and our first results concerning the diastereoselective monoand di-substitution at the α -position of the cyano group. Among the desirable structural features of this new synthon is the facile deprotection of the primary amine fonction. The condensation of (-) phenylglycinol with formaldehyde in the presence of KCN led, in a "one-pot reaction", to the formation of $\underline{1}^5$ (fig. 1) as an oil, ($[\alpha]^{20}$ -173° (CHCl $_3$, \underline{c} 1.4)) in 94% yield. The substitution of the anion derived from $\underline{1}$ can in principle lead to a large variety of optically active α -aminonitriles that would be otherwise difficult or impossible to prepare using alternative methods. It turned out that such a reaction is possible and alkylation of the anion of $\underline{1}$ with a series of alkyl halides (methyl iodide, ethyl, propyl, benzyl and allyl bromides) afforded compounds $\underline{2}$ and $\underline{3}^{6,7,8}$ (Table 1). The diastereomers $\underline{2}$ a-e (major) and $\underline{3}$ a-e (minor) have been easily separated in their pure form by flash chromatography. Diastereomeric excesses (d.e.s.) were determined in the crude mixtures of the aminonitriles by integration of the methylene protons N-CH $_2$ -O in the 1 H NMR spectra (200 MHz) : $\frac{2}{5}$ & 4.45 and 4.85ppm (J $_{AB}$ = 2.5 Hz) ; $\frac{3}{5}$ & 4.55 and 4.70ppm (J $_{AB}$ = 4.5 Hz). Tentative assignment of the absolute configuration at the new chiral center was made by observation of a downfield position for the methine H-6 of the major isomer 2 (Table 1) (major) $$\frac{4}{5}$$ (major) $\frac{5}{2}$ (minor) Table I: alkylation of 1 with alkyl halides R-X | | R | R' | yield [*] | d.e. | absolute conf. | δ СН _З | (ppm) | |---|---------------------------------|---------------------------------|--------------------|------|-------------------|-------------------|----------| | | | | (%) | (%) | of major <u>4</u> | 4 | <u>5</u> | | а | CH ₃ | CH ₂ CH ₃ | 70 | 6 4 | S | 1.23 | 1.46 | | b | СH ₂ CH ₃ | CH ₃ | 68 | 36 | R | 1.46 | 1.23 | | С | CH ₃ | CH ₂ Ph | 73 | 52 | S | 1.08 | 1.34 | | d | CH ₂ Ph | CH ₃ | 68 | 40 | S | 1.08 | 1.34 | | е | CH ₃ | CH2-0CH3 | 72 | 50 | S | 1.11 | 1.34 | | | | `осн ₃ | | | | | | Table II: alkylation of 2 and 3 with alkyl halides R'-X а b С d е as previously observed for the S isomer in the series of α -aminonitriles derived from (S)- α -methylbenzylamine^{3a}. Additionnal support for the S absolute configuration of $\underline{2}$ was obtained by transformation of the mixture of diastereomers $\underline{2b}$ and $\underline{3b}$ (d.e. 50%) into (-)-(S)- α -aminobutyric acid ($[\alpha]_{\mathbb{D}}^{20}$ - 7.5° (\underline{c} 2, HCl 5N), lit $[\alpha]_{\mathbb{D}}^{20}$ - 20.4° (\underline{c} 2, HCl 5N)⁹) by acid hydrolysis and hydrogenolysis¹⁰. ^{*} pure isolated products ; overall yield. Di-alkylated products $\frac{4}{4}$ a-e and $\frac{5}{2}$ a-e were easily prepared by metalation of the diastereomeric mixtures $\frac{2}{2}$ and $\frac{3}{2}$ a,b or e and reaction with alkyl halides (Table 2). The d.e.s. were measured by integration of the cleanly separated CH₃ signals in the 1 H NMR spectra of the crude mixtures. In these cases no separation of the diastereomers could be achieved. The absolute configurations for the major isomers $\frac{4c}{2}$ and $\frac{4c}{2}$ were assigned as S by comparison of the 6 CH₃ signals of the major and minor isomers with the reported values for analogous α -aminonitriles derived from (S)- α -methylbenzylamine 11 . For compound 11 we propose using the above argument the S absolute configuration. This assignement was confirmed by transformation of a mixture of derivatives 11 and 12 d.e. 12 0 into (+)-S-isovaline 12 0 + 4.4° (c 0.49, H₂0), lit. 12 0 + 11.9° (c 0.78, H₂0) 12 1. As expected a reverse introduction of the substituents changed the absolute configuration of the major isomer (4b vs 4a). Surprisingly for 4c and 4d the major stereomer S was always formed. A working model, in agreement with the observed results, is that the more stable conformation – owing to minimal non-bonded repulsions – of the deprotonated α -aminonitriles 2^8 (fig. 2) reacts with the alkylating agents from the less hindered face. When R = H, CH₃ or C₂H₅, the C1 conformer is more stable and the preferential attack of the electrophilic species from the less hindered si-face leads to the major products $\underline{2}$ (having the S configuration) and $\underline{4}$, whereas the C2 conformer is preferred when R = CH_2Ph due to steric interaction between the phenyl group and the large R benzyl substituent. So the major S diastereomer 4d is obtained from both 2a and 2e. Efforts are presently being made to complete the development of the chiral cyanomethyloxazolidine $\underline{1}$ as a general synthon for the preparation of various chiral aminoacids, aminoalcohols, amines, etc. ## REFERENCES AND NOTES - For Part III see J. Royer and H.-P. Husson, Tetrahedron Lett., 1985, 26, 1515. - a) J.D. Albright, Tetrahedron, 1983, 39, 3207; b) G. Stork, A.A.Ozorio and A.Y.W. Leong, Tetrahedron Lett., 1978, 5175. - Chiral α-aminonitriles have been synthesized by : a) Strecker type reactions (D.S. Stout, L.A. Black and W.L. Matier, J. Org. Chem., 1983, 48, 5369 and references herein cited); b) Cyanosilylation of Schiff bases (I. Ojima and S.I. Inaba, Chem. Lett., 1975, 737); and c) Amination of α-silyloxynitriles (K. Mai and G. Patil, Synthetic Commun., 1984, 14, 1299). - A chiral 1,4-dihydropyridine equivalent conceptually analogous to 1 is being studied in our laboratory: L. Guerrier, J. Royer, D.S. Grierson and H.-P. Husson, J. Am. Chem. Soc., 1983, 105, 7754. - Preparation of $\underline{1}$: to a stirred solution of (-) phenylglycinol (23.62g, 0.16 mol), KCN (10.4g, 0.16 mol) in water (650mL) at pH ~ 3 (citric acid) was added over 30 min at r.t. a solution of formaldehyde (40%, 260mL). The reaction mixture was stirred for an additionnal 30 min, then basified (Na₂CO₃) and extracted (CH₂Cl₂). The combined organic fractions were washed with water, dried (Na₂SO₄) and concentrated to give a yellow oil which was purified by flash chromatography (SiO₂, hexane-AcOEt, 80-20). $\underline{1}$ was obtained as a colorless oil (31.15 g; 94% yield). - 6 All new compounds showed satisfactory analytical and spectroscopic data. - In a typical experiment, to a stirred solution of LDA/HMPA (1/1; 1.1 eq. 0.48M in THF) at -78°, was added 1 (1 eq., 0.66M in THF) via seringe over 5 min; after 15 min 1.1 eq. of R-X was added. The reaction mixture was stirred for 1 h, quenched by NH₄Cl then extracted with ether, dried and concentrated to dryness. Flash chromatography of the residual oil (SiO₂, hexane-ACOEt, 85-15) yielded the separated isomers 2 and 3. - The alkylation reaction likely occured under kinetic control since using only 0.9 eq. of LDA instead of 1.1 eq. quite similar d.e. were obtained (32 vs 38%; table I, a). - 9 K. Harada and T. Okawara, Bull. Chem. Soc. Japan, 1973, 46, 191. - A range of 22-58% of e.e. was usually obtained in Strecker type aminoacid synthesis without fractionation: a) K. Harada and T. Okawara, J. Org. Chem., 1973, 38, 707 b) J.C. Fiaud and A. Horeau, Tetrahedron Lett., 1972, 2565. - 11 K. Weinges, K. Gries, B. Stemmle and W. Schrank, Chem. Ber., 1977, 110, 2098. - 12 S. Yamada and K. Achiwa, Chem. Pharm. Bull., 1964, 12, 1525.