One-pot synthesis of tropinone by tandem (domino) ene-type reactions of acetone silyl enol ethers

Koichi Mikami* and Hirofumi Ohmura
Department of Applied Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan. E-mail: kmikami@o.cc.titech.ac.jp

Received (in Cambridge, UK) 16th August 2002, Accepted 10th October 2002
First published as an Advance Article on the web 23rd October 2002

A synthetic approach for tropane alkaloids on the basis of tandem (domino) ene-type reactions of acetone silyl enol ethers with iminium ions is shown to be triggered by intermolecular ene-type reactions followed by 6-(2,5) silatropic ene-type cyclizations. Tropane alkaloids have received much attention as synthetic target molecules, because many of them reveal remarkable biological activity and their unique structural feature, the so-called tropane skeleton. Willstätter achieved the first synthesis of a tropane alkaloid, tropinone through a long sequence of reactions. A number of synthetic studies have since been reported, which can be classified principally into five categories: iminium cyclization, cycloaddition reaction, conjugate addition, transition metal mediated reaction, and rearrangement. Among them, Robinson’s pioneering synthesis using acetonedicarboxylic acid, methylamine and succindialdehyde is noteworthy but require the further operations of acidification and decarboxylation to obtain the final product, tropine. Herein, we report the one-pot synthesis of the tropane alkaloid based on tandem (domino) ene-type reactions of acetone silyl enol ethers without acidification and decarboxylation. In the tandem (domino) reaction sequence, the first carbon–carbon bond formation would proceed via intermolecular ene-type reactions accompanied by 6-(2,5) silatropic ene cyclizations, following [1,5]-hydrogen shift systems (vide infra).

As expected, tropinone was found to be synthesized in one-pot with succinedialdehyde and methylamine in CH₂Cl₂ followed by the addition of acetone silyl enol ether and BF₃·OEt₂ at −78 °C (Scheme 1).

The sterically less demanding trimethylsilyl enol ether gave a better yield presumably because of the higher silyl-migratory aptitude. In order to clarify the first carbon–carbon bond formation process, the reaction of silyl enol ether with monomethoxypyrrolidine was examined in the presence of Lewis acids such as BF₃·OEt₂ and TMSOTf (Scheme 2). Significantly, silyl enol ether was indeed obtained via a prototropic ene-type reaction with only a trace amount of ketone 4. When the reaction of dimethoxyxypyrrolidine with 1a was carried out, tropinone derivative was obtained albeit in low yields (9%) with bis-adduct 7 (22%) (Scheme 3).

A catalytic use of TMSOTf with siloxyallylsilane should afford tropinone in higher yields via the sequential generation of iminium ions (8 and then 11) (Scheme 4). Iminium ion 8 generated by TMSOTf (cat.) would react with 9 to give silyl enol ether 10 accompanied by the reproduction of TMSOTf. Subsequently, the regioisomeric iminium ion 11 would be generated from 10 to give tropinone by six-membered ring formation via the (2,5) silyl-migratory ene-type reaction. Indeed, a model reaction of 9 with monomethoxypyrrolidine in the presence of a catalytic amount of TMSOTf at −78 °C afforded tropinone in high yield. A catalytic use of TMSOTf with siloxyallylsilane should afford tropinone in higher yields via the sequential generation of iminium ions (8 and then 11).
gave silyl enol ether 3, which has a similar structure to 10, in 68% yield (not shown).

 Gratifyingly, the TMSOTf catalysed reaction between 9 and 5 afforded tropinone analogue 6 in a significantly higher yield than that obtained with silyl enol ether 1 (Scheme 5).

We gratefully thank Prof. Y. Matsumura at Nagasaki University for their useful discussions.

Notes and references