GC_MS (Hive Bee) 11-07-02 19:55 No 377353 |
Sodium percarbonate and the Dakin reaction (Rated as: excellent) |
Bookmark | ||||||
This bee found a rather interesting reference today when reading a new chem book on reaction mechanisms. It involves the so-called Dakin-reaction. http://themerckindex.cambridgesoft.com/T Tetrahedron Letters 33(7) (1992) 865-866 Title: Sodium Percarbonate: A Convenient Reagent for the Dakin Reaction Authors: G W Kabalka (*), N K Reddy, C Narayana Departments of Chemistry and Radiology, The University of Tennesse, Knoxville, TN 37996-1600. Abstract: Sodium percarbonate, a readily available, inexpensive and easy to handle reagent efficiently oxidizes hydroxylated benzaldehydes and hydroxylated acetophenones to hydroxyphenols. Phenols and their derivatives are fundamentally important substrates used extensively in organic synthesis. In the Dakin reaction, hydroxylated benzaldehydes are converted to hydroxy-phenols through the replacement of formyl groups by a hydroxyl moiety using alkaline hydrogen peroxide (1). Other reagents have been employed to oxidize aromatic aldehydes to arylformates; these include peroxyacetic acid (2), peroxybenzoic acid (3), m-chloroperoxybenzoic acid (4) and organoperoxyselenic acid (5). Sodium percarbonate (Na2CO3.1,5H2O2) is a very inexpensive large scale industrial chemical which is extensively used in the detergent industry as a bleaching agent (6). It has been used for the oxidation of sulfides (7), amines (7,8), organoboranes (9) as well as for the epoxidation of olefins (7) and hydrolysis of nitriles to amides (10). We now wish to report that sodium percarbonate oxidizes hydroxylated benzaldehydes and acetophenones to hydroxy phenols in good yields (Table). In a typical procedure, a mixture of aromatic aldehyde (3.0 mmol) and sodium percarbonate (3.0 mmol) is dissolved in tetrahydrofuran (10.0 mL) and water (4.0 mL) and sonicated in an ultrasound bath under an argon atmosphere. The reaction is quenched with acetic acid (1.0 mL) and the solvent removed under vacuum. Methanol is added to the residue and the mixture filtered. The filtrate is concentrated under reduced pressure and chromatographed (silica gel; 30% ethyl acetate in hexanes). Para-hydroxybenzaldehydes react more slowly than the corresponding ortho-hydroxybenzaldehydes. Meta-hydroxybenzaldehyde fails to undergo oxidation. 4-hydroxy-3-nitrobenzaldehyde also failed to react with Na2CO3.1,5H2O2 which may be due to intramolecular hydrogen bonding. In addition to aromatic aldehydes, we examined the conversion of hydroxylated acetophenones to hydroxyphenols. 2-hydroxyacetophenones (entries 11 and 13) were oxidized to catechols while 4-hydroxyacetophenones (entries 12 and 14) failed to undergo oxidation.
Ave Hive, synthetisandi te salutant! |
||||||||
Protium (Hive Bee) 11-08-02 04:39 No 377539 |
Excellent! | Bookmark | ||||||
Information like this is why I read the Hive. You just made my day man. Once more the range of synthesis options provided to bees has been expanded. Great find, I hope that someone tries this soon, and i'll definately be looking into it for the future Pr(+)tium |
||||||||