

TETRAHEDRON

Tetrahedron 59 (2003) 5927-5934

Regioselective aminobromination of terminal alkenes $\stackrel{\mbox{\tiny\scale}}{\to}$

Anna Śliwińska and Andrzej Zwierzak*

Institute of Organic Chemistry, Technical University (Politechnika), Zeromskiego 116, 90-924 Łódź, Poland

Received 20 March 2003; revised 13 May 2003; accepted 5 June 2003

Abstract—The addition of *t*-butyl *N*,*N*-dibromocarbamate (BBC) to a variety of terminal alkenes has been studied. The reaction was spontaneously initiated and proceeded smoothly in refluxing dichloromethane. The *N*-bromo adducts, formed upon addition, could be reduced in situ with aqueous sodium sulfite to give the corresponding 2-bromo-*N*-Boc-amines. Immediate deprotection of these compounds with gaseous HCl or *p*-toluenesulfonic acid afforded 2-bromoamine hydrochlorides or tosylates in pure state and good overall yields. The observed regioselectivity for anti-Markovnikov addition, as proven by NMR and MS, is fully consistent with the radical-chain mechanism proposed for the reaction.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A plethora of synthetic procedures leading to aziridines has been described.¹ However, there is still a need for a new, simple and economic synthesis of this class of compounds due to their interesting chemistry dominated by ringopening reactions. Among the methods used for the preparation of aziridines, spontaneous cyclization of 2-bromoamines is practically meaningless because these starting materials are almost inaccessible.

Some years ago we reported^{2,3} a simple two-step procedure leading to 2-bromoamine hydrochlorides involving the free-radical or ionic addition of diethyl N,N-dibromophosphoramidate (DBPA) **1** to alkenes and cycloalkenes followed by degradation of the adducts with gaseous hydrogen chloride (Scheme 1).

This approach to 2-bromoamines remained practically unnoticed by the chemical community possibly due to the necessary use of an organophosphorus reagent of unknown toxicity. Moreover, the addition of DBPA **1** to less reactive alkenes afforded rather low yields of products and often inevitably led to complex and intractable mixtures of compounds containing mainly allylic bromination and/or bromine addition products. All these facts prompted us to investigate a new, phosphorus free reagent, *t*-butyl N,N-dibromocarbamate (BBC) **3** as a better substitute of DBPA for aminobromination of terminal alkenes.

2. Results and discussion

2.1. Preparation of *t*-butyl *N*,*N*-dibromocarbamate (BBC) **3**

The title compound could be readily obtained in high yield by bromination of crude *t*-butyl carbamate 2^4 contaminated with ca. 10% of an unidentified impurity. The reaction was carried out at room temperature by adding bromine to the aqueous solution of *t*-butyl carbamate **2** containing 10% excess of potassium carbonate. *t*-Butyl *N*,*N*-dibromocarbamate **3**, isolated by extraction with dichloromethane in ca. 90% yield, was an orange solid contaminated with ca. 9% of *t*-butyl *N*-bromocarbamate **3a** as determined by ¹H NMR spectroscopy (Scheme 2). Analytically pure samples of **3** (mp 93–95°C) could be prepared by bromination of pure **2** (mp 107–108°C) and washing the product with cold pentane.

$$\begin{array}{c|c} & & \hline 1. (EtO)_2 P(O) NBr_2 (1) \\ \hline 2. NaHSO_3 aq. \end{array}$$

Scheme 1.

0040–4020/\$ - see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0040-4020(03)00907-4

^{*} Preliminary communication: Klepacz, A.; Zwierzak, A. Tetrahedron Lett. 2001, 42, 4539-4540.

Keywords: alkenes; amines; radicals and radical reactions; deblocking. * Corresponding author. Tel.: +48-42-6313146; fax: +48-42-6365530

Scheme 2.

4,5	R ¹	R ²	Yield (%)	4,5	R ¹	R ²	Yield (%)
а	Ph	Ме	—	е	Bu	н	62
b	Ме	Ме	77	f	C ₅ H ₁₁	н	58
с	Ме	Et	87	g	C ₆ H ₁₃	н	65
d	Pr	н	61	h	<i>neo</i> -C ₅ H ₁₁	Ме	_

Scheme 3.

Scheme 4.

isobutylene, 2-methylbut-1-ene, 3-methylbut-1-ene, pent-1ene, hex-1-ene, hept-1-ene, oct-1-ene, and 2,4,4-trimethylpent-1-ene has been studied.

All reactions were carried out in refluxing dichloromethane by adding dropwise the solution of BBC **3** to an equimolar amount of the alkene. After a short induction period the reaction was practically complete after 20 min in the case of phenylethylenes, isobutylene and 2-methylbut-1-ene. Less reactive alkenes added BBC **3** relatively slowly in refluxing dichloromethane but all reactions were complete after 2 h, which could be tested visually by reduction in the dark-red BBC color. All additions were performed under dispersed light and did not need any UV irradiation. In all cases except styrene and 3-methylbut-1-ene the reactions proceeded according to the same general course outlined in Scheme 3.

The formation of 1:1 adducts was always observed. The reactions proceeded regioselectively in an anti-Markovnikov fashion (see proof of structure below) affording *N*-Boc-*N*-bromo-2-bromoalkylamines **4**. Upon reduction with 12% aqueous sodium sulfite at $5-10^{\circ}$ C the initially formed *N*-bromoadducts **4** were quantitatively transformed in situ into *N*-Boc-2-bromoalkylamines **5a**–**i**. Some crude *N*-Boc-2-bromoalkylamines **5b**–**g**,**i** formed in high yields could be easily purified by column chromatography, analyzed, and characterized spectroscopically. Compounds **5a** and **5h** were deprotected by means of hydrogen chloride in dichloromethane to give the corresponding hydrochlorides **9a** and **9h** (vide infra). The adducts of BBC **3** to (*E*)- and (*Z*)-1-phenylpropene were found to be

Scheme 5.

t-Butyl *N*,*N*-dibromocarbamate **3** was perfectly stable at $+5^{\circ}$ C and could be stored when refrigerated for indefinite periods of time without any signs of decomposition. The removal of *t*-butyl *N*-bromocarbamate **3a** from crude **3** before use for addition to alkenes was neither necessary nor desirable because **3a** upon reduction with aqueous sodium sulfite was transformed into *t*-butyl carbamate **2**, easily removable by washing with water.

2.2. Addition of *t*-butyl *N*,*N*-dibromocarbamate (BBC) **3** to terminal alkenes

The addition of BBC **3** to several straight and branchedchain terminal alkenes, namely styrene, 2-phenylpropene, 75:25 diastereomeric mixtures of *erythro-* and *threo-* isomers[†] in both cases (see Section 2.5, stereochemistry of BBC addition).

Addition of BBC **3** to styrene was disturbed by relatively fast consecutive cyclization of the primarily formed *N*-Boc-2-bromo-2-phenylethylamine **5i** to 5-phenyl-oxazolidin-2one **6** (Scheme 4). This reaction, not observed for other BBC-alkene adducts, involved an intramolecular S_N^2 displacement of the benzylic bromine in **5i**. The analogous

5928

[†] *erythro* (*RS* and *SR*) and *threo* (*RR* and *SS*) configurations were ascribed to both racemic diastereomeric adducts on the basis of Cahn, Ingold and Prelog convention.⁵

Scheme 6.

conversion of some 2-mesyloxy-N-Boc-amines into oxazolidinones has been reported recently.⁶

Addition of BBC **3** to low-boiling 3-methylbut-1-ene was performed by adding large excess (ca. 4 equiv.) of hydrocarbon dissolved in dichloromethane to the refluxing solution of BBC in this solvent. The reaction (Scheme 5) which was complete in 30 min, afforded ca. 1:1 mixture of *N*-Boc-2-bromo-3-methylbutylamine **7** and *N*-Boc-2,3-dibromo-3-methylbutylamine **8** as determined by ¹H NMR spectroscopy of the respective tosylates obtained by deprotection (vide infra).

Compound **8** was probably produced by allylic bromination of the tertiary hydrogen atom in the starting hydrocarbon followed by BBC addition to 3-bromo-3-methylbut-1-ene thus formed.

2.3. Deprotection of *N*-Boc-2-bromoalkylamines (5a-i). Preparation of 2-bromo-alkylamine hydrochlorides (9a-i) and tosylates (10b-i)

All crude BBC adducts to terminal alkenes 5a-i could be easily and effectively deprotected to the corresponding 2-bromoalkylamine hydrochlorides 9a-i by treatment with gaseous hydrogen chloride in dichloromethane at room temperature for 24 h. Alternative degradation with p-toluenesulfonic acid in boiling dichloromethane was faster (1 h) and more convenient (Scheme 6). The hydrochlorides 9a-i and tosylates 10b-i obtained on evaporation of solvent and addition of ether to the residue separated from the solution in pure state leaving all impurities in the mother liquor. Overall yields of 2-bromoalkylamine hydrochlorides 9a-i and tosylates 10b-i were within the range 50-85%. All compounds were analytically pure. Their yields are collected in the Table 1. All melting points of 2-bromoalkylamine hydrochlorides 9a-i were substantially higher than described previously.²

Table 1. 2-Bromoalkylamine hydrochlorides $(9a\!-\!i)$ and tosylates $(10a\!-\!i)$

Entry	R^1	\mathbb{R}^2	(9) Yield (%) ^a	(10) Yield (%) ^a
0	Dh	Ma	51	
a	PII	Me	51	_
b	Me	Me	78	76
c	Me	Et	80	75
d	Pr	Н	60	66
e	Bu	Н	54.5	60
f	$C_{5}H_{11}$	Н	54	60
g	C ₆ H ₁₃	Н	52	58
ĥ	Neo-C ₅ H ₁₁	Н	55	44
i	Ph	Н	88	86

^a Yields of crude, analytically pure products.

2.4. Proof of structure of BBC (3) adducts of terminal alkenes

All BBC **3** adducts of terminal alkenes **5a**-**i** and/or their degradation products **9**,**10b**-**i** were satisfactorily analyzed for C, H, and N. Regioisomeric purity was evident from ¹H NMR spectra examination and could be further confirmed by detailed analysis of these spectra (see Section 4). The anti-Markovnikov orientation of the adducts **5a**-**i** was unequivocally established by mass spectrometry of 2-bromoalkylamine hydrochlorides **9a**-**i** and tosylates **10b**-**i**. The mass spectra of **9a**-**i** and **10b**-**i** showed distinct α -cleavage fragmentation giving [CH₂ ==NH₂] \oplus ions, *m*/*z*=30, in accord with the regioselectivity shown in Scheme 7.

Such a pattern would not be obtained for the salts **9** and **10** with the amino function at the non-terminal, secondary or tertiary position. The anti-Markovnikov orientation of the adducts **5a**-**i** could be also corroborated by the absence in MS spectra of **9a**-**i** and **10b**-**i** characteristic peaks at $m/z=M-CH_2Br$, corresponding to the expected preferential α -cleavage fragmentation of the regioisomeric Markovnikov adducts.

Scheme 7.

5929

2.5. Stereochemistry of BBC (3) addition to 1-phenylpropenes

Diastereomeric (E)- and (Z)-1-phenylpropenes⁷ were selected as model compounds for studying the stereochemical course of BBC 3 addition. Both crude BBC adducts to (E)- and (Z)-1-phenylpropene **11a** and **11b** have superimposable ¹H NMR spectra, suggesting that they are identical mixtures of erythro- and threo-isomers. The assignment of stereochemistry could not be arrived at by ¹H NMR due to the complex multiplicity patterns of the spectra. Detailed analysis was, however, possible for the ¹H NMR spectra of the respective 2-bromoamine hydrochlorides 12 obtained upon degradation of the crude adducts 11a and 11b with hydrogen chloride in dichloromethane. This treatment does not change the configuration of both chiral centers. The ¹H NMR spectrum of the hydrochloride 12 obtained from (E)-1-phenylpropene adduct 11a exhibited the presence of two doublets of different intensities centered at δ =5.53 ppm (J_{HH}=5.0 Hz; higher intensity signal) and δ =5.22 ppm (J_{HH}=10.0 Hz; lower intensity signal) which could be assigned to the benzylic protons H_B and H_B, in both diastereoisomers on the basis of integration, multiplicity and chemical shifts. It is feasible to assume the synclinal arrangement of vicinal protons H_A and H_B in the preferred conformation of erythro-isomer 12a. This would account for a smaller vicinal coupling constant of the lower field doublet according to Karplus relationship. The antiperiplanar arrangement of vicinal protons H_{A'} and H_B, in the preferred conformation of the *threo*-isomer **12b** is in turn fully compatible with a higher value of the respective coupling constant according to Karplus equation (Scheme 8).

Almost identical spectral assignments were found for the mixture of diastereomeric 2-bromoamine hydrochlorides **12** obtained from (*Z*)-1-phenylpropene adduct **11b** (δH_B =5.48 ppm, J_{HH} =5.25 Hz; δH_B =5.19 ppm, J_{HH} =10.25 Hz). Preferential formation of the *erythro*- adduct from both diastereomeric alkenes can be interpreted in terms of the existence of dynamic equilibrium between the intermediately formed benzyl type radicals **12a'** and **12b'** (see below). The radical **12a'** leading to the *erythro*- adduct (**12a**)

is more stable and hence more abundant due to lesser crowding between the methyl and phenyl groups.

2.6. Mechanism of BBC addition to terminal alkenes

All BBC additions to terminal alkenes exhibit characteristic features indicative of spontaneously initiated^{8,9} free-radical chain reactions: (i) they follow totally regioselectively affording solely anti-Markovnikov adducts; (ii) they start with a short induction period; (iii) the addition to non-terminal alkenes, e.g. 1-phenylpropene is nonstereospecific. All these phenomena can be plausibly explained by assuming a free-radical reaction pathway presented in Scheme 9.

3. Conclusion

In conclusion we have developed a simple, two-step, and

efficient method for regioselective aminobromination of terminal alkenes using the new reagent-*t*-butyl N,N-dibromocarbamate (**3**). The procedure offers an operationally simple and convenient synthesis of 2-bromoamines. As a potential route to aziridines and N-Boc-aziridines it can successfully compete with other available protocols involving activation of the hydroxyl group in 2-aminoalcohols by converting into tosylates or mesylates and subsequent ring closure by means of strong bases.¹⁰

4. Experimental

4.1. General

Melting points (determined in open capillary tubes) are uncorrected. IR spectra (liquid films or KBr discs) were measured using a specord M 80 (C.Zeiss) instrument. ¹H NMR spectra were recorded on a Bruker AVANCE DPX-250 spectrometer operating at 250 MHz, using CDCl₃ solutions unless otherwise stated. FAB/MS were measured on an APO Electron (Ukraine) Model MI 12001 mass spectrometer equipped with a FAB ion source (thioglycerol matrix). Xenon was used as ionized gas. The beam energy was set to 5 keV. Column chromatography was performed on silica gel 60 (Baker, 200–400 mesh). All commercially available starting materials were purchased from Fluka and used without additional purification.

4.1.1. Preparation of *t*-butyl *N*,*N*-dibromocarbamate (BBC, 3). Bromine (35.16 g, 0.22 mol) was added dropwise with efficient stirring for 40 min to a solution of crude *t*-butyl carbamate⁴ (prepared in CH₂Cl₂, mp 90–93°C, yield ca. 100%, purity ~90%; 12.9 g, 0.11 mol) and K_2CO_3 (15.2 g, 0.11 mol) in water (200 mL) at room temperature. The resulting mixture was stirred for 2 h, CH₂Cl₂ (100 mL) was then added and stirring was continued for further 15 min. The organic layer was separated, and the aqueous phase was extracted with CH₂Cl₂ (3×30 mL). Combined extracts were washed with water (30 mL), dried (MgSO₄), and the solvent evaporated in vacuo to give the title compound 3 (24.6 g, 90%) as an orange solid. Crude 3 was contaminated (¹H NMR) with ca. 9% of *t*-butyl *N*-bromocarbamate. Analytically pure sample of 3 (prepared from pure t-butyl carbamate, mp 107-108°C and washed with cold pentane) had mp 93-95°C; [Found: C, 21.7; H, 3.4; N, 5.2. C₅H₉O₂NBr requires C, 21.84; H, 3.30; N, 5.09%]; ν_{max} (KBr) 2992, 1696, 1368, 1280, 1264, 1248, 1144, 872, 744 cm⁻¹; $\delta_{\rm H}$ 1.50 (9H, s, CH₃); $\delta_{\rm C}$ 156.2, 86.2, 27.3; m/z (CI) 274 (41, M+1), 276 (96, M+3), 278 (40, M+5).

4.2. Addition of BBC (3) to terminal alkenes. General procedure

A solution of BBC (3) (1.38 g, 5 mmol) in CH_2Cl_2 (7 mL) was added dropwise with stirring to the solution of terminal alkene (5 mmol) in refluxing CH_2Cl_2 (7 mL) for 20 min. Stirring was then continued if necessary until pale-yellow coloration of the solution was obtained (ca. 2 h for compounds 5d-g). In the case of isobutylene a solution of alkene in CH_2Cl_2 was added to 3 dissolved in CH_2Cl_2 until disappearance of an orange color. The resulting solution was cooled to $5-10^{\circ}C$ and 12% aqueous solution of sodium

sulphite (5 mL) was added slowly at this temperature. Dichloromethane (15 mL) was then added, the organic layer was separated, washed with water (3×5 mL), dried (MgSO₄) and the solvent evaporated in vacuo. The residual crude adducts (**5b**-**g**) were purified by column chromatography using CH₂Cl₂ as eluent. Compounds (**5a**) and (**5h**) decomposed on attempted purification.

4.2.1. *N*-Boc-2-bromo-2-methylpropylamine (5b). Yield 77%, colorless needles, mp 51–53°C; [Found: C, 42.9; H, 7.4; N, 5.7. C₉H₁₈BrNO₂ requires C, 42.87; H, 7.20; N, 5.55%]; $R_{\rm f}$ (CH₂Cl₂) 0.58; $\nu_{\rm max}$ (CCl₄ soln) 3336, 2980, 2965, 1716, 1508, 1460, 1392, 1368, 1168, 1128 cm⁻¹; $\delta_{\rm H}$ 5.06 (1H, bs, NH), 3.39 (2H, d, *J*=6.25 Hz, CH₂), 1.74 (6H, s, *Me*₂C), 1.46 (9H, s, *Me*₃C); FAB/MS: 252 (14, M+1), 250 (14, M-1) 154 (18), 152 (18), 116 (74), 73 (56), 57 (100%).

4.2.2. *N*-Boc-2-bromo-2-methylbutylamine (5c). Yield 87%, colorless solid, mp 30–32°C; [Found: C, 45.0; H, 7.7; N, 5.4. $C_{10}H_{20}BrNO_2$ requires C, 45.12; H, 7.58; N, 5.26%]; R_f (CH₂Cl₂) 0.54; ν_{max} (film) 3300, 2980, 2935, 1708, 1515, 1450, 1400, 1375, 1255, 1175, 1135 cm⁻¹; δ_H 4.99 (1H, bs, NH), 3.43 (2H, d, J=6.4 Hz, CH₂NH), 1.91 (1H, q, J=7.3 Hz, MeCH₂), 1.76 (1H, q, J=7.3 Hz, MeCH₂), 1.76 (1H, q, J=7.3 Hz, MeCH₂), 1.64 (3H, s, MeC(Br), 1.44 (9H, s, Me_3 C), 1.04 (3H, t, J=7.3 Hz, MeCH₂); FAB/MS: 265 (3, M+1), 264 (4, M-1), 168 (21), 166 (26), 136 (38), 69 (47), 57 (100%).

4.2.3. *N*-Boc-2-bromopentylamine (5d). Yield 61%, colorless oil; [Found: C, 45.3; H, 7.6; N, 5.1. $C_{10}H_{20}BrNO_2$ requires C, 45.12; H, 7.58; N, 5.26%]; R_f (CH₂Cl₂) 0.74; ν_{max} (film) 3360, 2990, 2960, 1710, 1520, 1465, 1400, 1380, 1255, 1175 cm⁻¹; δ_H 5.01 (1H, bs, NH), 4.06–4.15 (1H, m, CHBr), 3.63 (1H, ddd, *J*=14.3, 6.8, 3.8 Hz, CHBr–CH₂–NH), 3.33 (1H, ddd, *J*=14.3, 7.9, 5.7 Hz, CHBr–CH₂–NH), 1.79 (2H, q, *J*=7.25 Hz, CH₂–CH₂–CHBr), 1.46 (9H, s, *Me*₃C), 1.38–1.63 (2H, m, CH₃CH₂), 0.94 (3H, t, *J*=7.25 Hz, CH₃–CH₂); FAB/MS: 266 (2, M+1), 264 (2, M–1), 168 (65), 166 (71), 57 (56), 41 (74%).

4.2.4. *N*-Boc-2-bromohexylamine (5e). Yield 62%, colorless oil; [Found: C, 47.3; H, 8.1; N, 5.2. $C_{11}H_{22}BrNO_2$ requires C, 47.18; H, 7.91; N, 5.00%]; R_f (CH₂Cl₂) 0.79; ν_{max} (film) 3360, 2980, 2940, 2890, 1700, 1520, 1465, 1400, 1380, 1260, 1180 cm⁻¹; δ_H 4.99 (1H, bs, N*H*), 4.04–4.14 (1H, m, C*H*Br–CH₂), 3.63 (1H, ddd, *J*=14.4, 6.6, 3.8 Hz, CHBr–CH₂–NH), 3.33 (1H, ddd, *J*=14.4, 7.9, 5.5 Hz, CHBr–CH₂–NH), 1.76–1.86 (2H, m, CH₂–CHBr– CH₂NH), 1.45 (9H, s, *Me*₃C), 1.25–1.62 (4H, m, CH₃(CH₂)₂), 0.91 (3H, t, *J*=7.1 Hz CH₃CH₂); FAB/MS: 182 (42), 180 (49), 144 (38), 57 (100), 43 (47), 29 (55%).

4.2.5. *N*-Boc-2-bromoheptylamine (5f). Yield 58%, colorless oil; [Found: C, 49.1; H, 8.3; N, 4.0. $C_{12}H_{24}BrNO_2$ requires C, 48.99; H, 8.22; N, 4.76%]; R_f (CH₂Cl₂) 0.60; ν_{max} (film) 3370, 2985, 2950, 2890, 1705, 1520, 1465, 1400, 1380, 1210, 1180 cm⁻¹; δ_H 4.97 (1H, bs, N*H*), 4.08–4.14 (1H, m, CHBr–CH₂), 3.58–3.68 (1H, m, CHBr–CH₂–NH), 3.33 (1H, ddd, *J*=14.6, 8.0, 5.4 Hz, CHBr–CH₂–NH), 1.76–1.85 (2H, m, CH₂–CHBr–CH₂NH), 1.45 (9H, s, *Me*₃C), 1.27–1.56 (6H, m, CH₃(CH₂)₃), 0.89 (3H, t, *J*=6.25 Hz, CH₃–CH₂); FAB/MS: 296 (3, M+3), 294 (4, M+1), 292 (4, M–1), 196 (82), 194 (84), 73 (32), 57 (100), 29 (43%).

4.2.6. *N*-Boc-2-bromooctylamine (5g). Yield 65%, colorless oil; [Found: C, 50.5; H, 8.6; N, 4.4. $C_{13}H_{26}BrNO_2$ requires C, 50.65; H, 8.50; N, 4.55%]; R_f (CH₂Cl₂) 0.73; ν_{max} (film) 3350, 2960, 2950, 2865, 1725, 1510, 1450, 1400, 1375, 1248, 1170 cm⁻¹; δ_H 4.98 (1H, bs, N*H*), 4.04–4.14 (1H, m, C*H*Br), 3.63 (1H, ddd, *J*=14.4, 6.6, 3.5 Hz, CHBr-CH₂-NH), 3.32 (1H, ddd, *J*=14.4, 7.9, 5.5 Hz, CHBr-CH₂-NH), 1.76–1.82 (2H, m, CH₂-CHBr), 1.45 (9H, s, *Me*₃C), 1.28–1.52 (8H, m, CH₃(CH₂)₄), 0.88 (3H, t, *J*=6.25 Hz, CH₃-CH₂); FAB/MS: 308 (6, M+1), 306 (4, M–1), 254 (92), 252 (100), 210 (16), 208 (24), 172 (64), 128 (22), 57 (100%).

4.3. Addition of BBC (3) to styrene

The reaction was performed as described above (Section 4.2). Crude adduct was found (¹H NMR) to be the mixture containing ca. 93% of N-Boc-2-bromo-2-phenylethylamine (5i) and 7% of 5-phenyl-oxazolidin-2-one (6). Compound (5i) was isolated in pure state, by crystallization from pentane. Yield 87%, colorless solid, mp 63-64°C; [Found: C, 51.9; H, 6.2; N, 4.8. C₁₃H₁₈BrNO₂ requires C, 52.01; H, 6.04; N, 4.67%]; v_{max} (KBr) 3430, 3000, 1700, 1525, 1385, 1320, 1280, 1180, 1075, 950, 775, 710, 640, 600 cm⁻¹; $\delta_{\rm H}$ 7.32-7.40 (5H, m, Ph), 5.06 (1H, t, J=6.75 Hz, CHBr-CH₂), 4.91 (1H, bs, NH), 3.73 (2H, t, J=6.75 Hz, CHBr-CH₂), 1.43 (9H, s, Me₃C); FAB/MS: 302 (1, M+3), 300 (1.5, M+1), 246 (13), 244 (16), 202 (5), 200 (6), 164 (41), 120 (19), 91 (29), 57 (100%). The residue insoluble in hot pentane afforded pure (6) after crystallization from water. Colorless leaflets, mp 87–88°C (Lit.,¹¹ mp 87–89°C); $\delta_{\rm H}$ 7.37-7.42 (5H, m, Ph), 6.56 (1H, bs, NH), 5.61 (1H, dd, J=8.75, 7.75 Hz, CH(O)-CH₂), 3.98 (1H, dt, J=8.75, 0.75 Hz, CH(O)-CH₂-NH), 3.54 (1H, ddd, J=8.75, 7.75, $0.75 \text{ Hz}, \text{CH}(\text{O}) - \text{CH}_2 - \text{NH}$).

4.4. Addition of BBC (3) to 3-methylbut-1-ene

The reaction was carried out by adding hydrocarbon (40 mmol) dissolved in CH₂Cl₂ (20 mL) to the solution of BBC (**3**, 2.76 g, 10 mmol) in the same solvent (15 mL) for 20 min at 40°C. Crude adduct obtained after reduction with sodium sulphite was a mixture containing ca. 54% of *N*-Boc-2-bromo-3-methylbutylamine (**7**) and ca. 46% of *N*-Boc-2,3-dibromo-3-methylbutylamine (**8**) as determined by ¹H NMR after immediate degradation with *p*-toluene-sulfonic acid (vide infra).

4.5. Deprotection of (5a–i) with hydrogen chloride. General procedure

A solution of crude adduct (5a-i) prepared as described above (Section 4.2) in CH₂Cl₂ (30 mL) was saturated with gaseous hydrogen chloride at 0°C and then left overnight at room temperature. The solvent was evaporated in vacuo and ether (30 mL) was added to the residue. Colorless crystals of (9a-i) obtained on refrigeration for 1 h were filtered off and washed with ether.

4.5.1. 2-Bromo-2-phenylpropylamine hydrochloride (**9a**). Yield 51%, colorless plates, mp 145–147°C (EtOH–Et₂0); [Found: C, 43.3; H, 5.3; N, 5.7. C₉H₁₃BrClN requires C, 43.14; H, 5.23; N, 5.59%]; ν_{max} (KBr) 3264, 3000, 2900,

1500, 1450, 1330, 1260, 1090, 972, 948, 768, 750, 700, 656 cm⁻¹; $\delta_{\rm H}$ (D₂O) 7.33–7.49 (5H, m, *Ph*), 3.82 (1H, d, *J*=9.25 Hz, *CH*₂–N) 3.77 (1H, d, *J*=9.25 Hz, *CH*₂–N), 1.79 (3H, s, *Me*); FAB/MS: 216 (6, M_K+2), 214 (18, M_K), 178 (100), 134 (71), 91 (34), 57 (36), 30 (13%).

4.5.2. 2-Bromo-2-methylpropylamine hydrochloride (**9b**). Yield 78%, colorless solid, mp 157–159°C (dec.) (EtOH–Et₂0); [Found: C, 25.7; H, 6.0; N, 7.6. C₄H₁₁BrClN requires C, 25.49; H, 5.88; N, 7.43%]; ν_{max} (KBr) 2960, 2680, 2600, 1590, 1520, 1408, 1165, 1105 cm⁻¹; $\delta_{\rm H}$ (D₂O) 3.35 (2H, s, *CH*₂–N), 1.84 (6H, s, *Me*); FAB/MS: 154 (41, M_K+2), 152 (44, M_K), 137 (27), 135 (27), 72 (76), 55 (100), 41 (59), 30 (44%).

4.5.3. 2-Bromo-2-methylbutylamine hydrochloride (9c). Yield 80%, colorless solid, mp 149–150°C (dec.) (EtOH–Et₂O); [Found: C, 29.8; H, 6.7; N, 7.1. C₅H₁₃BrClN requires C, 29.65; H, 6.47; N, 6.92%]; ν_{max} (KBr) 2950, 1588, 1514, 1450, 1420, 1395, 1152, 1105, 880 cm⁻¹; $\delta_{\rm H}$ (D₂O) 3.41 (1H, d, *J*=13.8 Hz, CH₂–N), 3.33 (1H, d, *J*=13.8 Hz, H₂, CH₂–N), 2.02 (1H, dq, *J*=15.0, 7.4 Hz, CH₃CH₂), 1.90 (1H, dq, *J*=15.0, 7.4 Hz, CH₃CH₂).

4.5.4. 2-Bromopentylamine hydrochloride (9d). Yield 60%, colorless solid, mp 175–177°C (EtOH–Et₂O); [Found: C, 29.5; H, 6.5; N, 7.1. C₅H₁₃BrClN requires C, 29.65; H, 6.47; N, 6.92%]; ν_{max} (KBr) 3160, 3065, 2010, 1600, 1508, 1410, 630 cm⁻¹; $\delta_{\rm H}$ (D₂O) 4.32 (1H, ddt, J=9.6, 7.0, 2.9 Hz, CH₂–CH–Br–CH₂), 3.50 (1H, dd, J=14.0, 2.9 Hz, CHBrCH₂–N), 3.32 (1H, dd, J=14.0, 9.6 Hz, CHBr–CH₂–N), 1.86 (2H, q, J=7.0 Hz, CH₂CH₂-CHBr), 1.38–1.64 (2H, m, CH₃CH₂CH₂), 0.92 (3H, t, J=7.4 Hz, CH₃CH₂); FAB/MS: 168 (83, M_K+2), 166 (87, M_K), 69 (68), 41 (100), 30 (70), 27 (50%).

4.5.5. 2-Bromohexylamine hydrochloride (**9e**). Yield 54.5%, colorless solid, mp 183–185°C (EtOH–Et₂O); [Found: C, 33.4; H, 7.1; N, 6.6. C₆H₁₅BrClN requires C, 33.28; H, 6.98; N, 6.47%]; ν_{max} (KBr) 3160, 2950, 2020, 1600, 1510, 1470, 1415, 1250 cm⁻¹; $\delta_{\rm H}$ (D₂O) 4.29 (1H, ddt, J=9.25, 6.9, 3.25 Hz, CH₂CHBrCH₂), 3.50 (1H, dd, J=14.0, 3.25 Hz, CHBrCH₂–N) 3.32 (1H, dd, J=14.0, 9.25 Hz, CHBrCH₂–N), 1.89 (2H, q, J=6.9 Hz, CH₂CH₂-CHBr), 1.31–1.53 (4H, m, CH₃(CH₂)₂CH₂), 0.89 (3H, t, J=7.1 Hz, CH₃CH₂).

4.5.6. 2-Bromoheptylamine hydrochloride (9f). Yield 54%, colorless leaflets, mp 181–183°C (dec.) (Me₂CO); [Found: C, 36.6; H, 7.3; N, 6.2. $C_7H_{17}BrClN$ requires C, 35.46; H, 7.43; N, 6.08%]; ν_{max} (KBr) 2952, 2015, 1600, 1510, 1472, 1404, 1240, 1165, 675 cm⁻¹; δ_{H} (D₂O) 4.30 (1H, ddt, *J*=9.5, 6.9, 3.0 Hz, CH₂CHBrCH₂), 3.49 (1H, dd, *J*=14.0, 3.0 Hz, CHBrCH₂–N), 3.31 (1H, dd, *J*=14.0, 9.5 Hz, CHBrCH₂–N), 1.88 (2H, q, *J*=6.9 Hz, CH₂CH₂CHBr), 1.30–1.56 (6H, m, CH₃(CH₂)₃CH₂), 0.87 (3H, dist.t, *J*=6.0 Hz, CH₃CH₂); FAB/MS: 196 (97, M_K+2), 194 (100, M_K), 114 (21), 55 (19), 40 (33), 30 (24), 27 (35%).

4.5.7. 2-Bromooctylamine hydrochloride (9g). Yield 52%, colorless solid, mp 194–196°C (dec.) (EtOH– Et_2O); [Found: C, 39.1; H, 7.7; N, 5.8. $C_8H_{19}BrCIN$ requires C,

39.28; H, 7.83; N, 5.73]; ν_{max} (KBr) 3150, 2970, 2020, 1600, 1508, 1468, 1412, 1228, 1164, 620 cm⁻¹; δ_{H} (D₂O) 4.30 (1H, ddt, *J*=9.5, 7.2, 3.0 Hz, CH₂CHBrCH₂), 3.49 (1H, dd, *J*=14.0, 3.0 Hz, CHBrCH₂–N), 3.31 (1H, dd, *J*=14.0, 9.5 Hz, CHBrCH₂–N), 1.87 (2H, q, *J*=7.2 Hz, CH₂CH₂-CHBr), 1.28–1.55 (8H, m, CH₃(CH₂)₄CH₂), 0.86 (3H, dist.t, *J*=6.8 Hz, CH₃CH₂).

4.5.8. 2-Bromo-2,4,4-trimethylpentylamine hydrochloride (9h). Yield 55%, colorless solid, mp 110–112°C (EtOH–Et₂O); [Found: C, 39.1; H, 7.6; N, 5.5. $C_8H_{19}BrClN$ requires C, 39.28; H, 7.38; N, 5.73%]; ν_{max} (KBr) 3150, 3070, 2020, 1404, 630 cm⁻¹; δ_H (D₂O) 3.48 (1H, d, J=13.9 Hz, CH_2 –N), 3.39 (1H, d, J=13.9 Hz, CH_2 –N), 2.19 (1H, d, J=15.5 Hz, Me_3C-CH_2), 2.07 (1H, d, J=15.5 Hz, Me_3C-CH_2), 2.07 (1H, d, J=15.5 Hz, Me_3C-CH_2), 1.94 (3H, s, $CH_3-C(Br)$), 1.07 (9H, s, Me_3C); FAB/MS: 210 (2, M_K+2), 208 (2, M_K), 164 (18), 128 (100), 111 (46), 57 (66), 30 (54%).

4.5.9. 2-Bromo-2-phenylethylamine hydrochloride (9i). Yield 88%, colorless plates, mp 165–167°C (dec.) (EtOH–Et₂O); [Found: C, 40.4; H, 4.7; N, 6.1. $C_8H_{11}BrCIN$ requires C, 40.62; H, 4.69; N, 5.92%]; ν_{max} (KBr) 2880, 2660, 1610, 1515, 1460, 930, 890, 770, 705, 690 cm⁻¹; δ_{H} (D₂O) 7.43–7.60 (5H, m, *Ph*), 5.35 (1H, dd, *J*=9.25, 5.75 Hz, *CHBr*–CH₂–N), 3.80 (1H, dd, *J*=13.8, 9.25 Hz, CHBr–CH₂–N), 3.69 (1H, dd, *J*=13.8, 5.75 Hz, CHBr*CH*₂–N); FAB/MS: 202 (34, M_K+2), 200 (35, M_K), 156 (23), 120 (100), 104 (80), 77 (45), 30 (64%).

4.6. Deprotection of BBC adducts (9b-i) with *p*-toluenesulfonic and. Preparation of 2-bromoalkyl-amine tosylates (10b-i)

A solution of *p*-toluenesulfonic acid monohydrate (0.95 g, 5 mmol) in EtOH (2 mL) was added to the solution of crude BBC adduct (**9b**-**i**) in CH₂Cl₂ (30 mL) and the mixture was refluxed gently for 1 h. The solvent was evaporated in vacuo and ether (30 mL) was added to the residue. The precipitated tosylates (**10b**-**i**) were filtered and washed with ether.

4.6.1. 2-Bromo-2-methylpropylamine tosylate (10b). Yield 76%, colorless solid, mp 140–141°C (EtOH–Et₂O); [Found: C, 40.9; H, 5.7; N, 4.4. $C_{11}H_{18}BrNO_3S$ requires C, 40.75; H, 5.60; N, 4.32%]; ν_{max} (KBr) 2950, 2640, 1625, 1540, 1500, 1464, 1408, 1384, 1234, 1172, 1040, 1014, 820, 680, 630, 572 cm⁻¹; δ_H 8.02 (3H, bs, NH₃), 7.17–7.79 (4H, AA'BB' system, C₆H₄), 3.11 (2H, q, *J*=5.75 Hz, CH₂– NH₃), 2.36 (3H, s, CH₃–C₆H₄), 1.72 (6H, s, Me₂C); FAB/ MS: 326 (13, M+3), 324 (14, M+1) 154 (98, M_K+2), 152 (100, M_K), 137 (19), 135 (19), 72 (95), 55 (46), 30 (27%).

4.6.2. 2-Bromo-2-methylbutylamine tosylate (10c). Yield 75%, colorless solid, mp 140–143°C (EtOH–Et₂O); [Found: C, 42.4; H, 6.0; N, 4.3. $C_{12}H_{20}BrNO_3S$ requires C, 42.61; H, 5.96; N, 4.14%]; ν_{max} (KBr) 3080, 2940, 1630, 1558, 1500, 1475, 1452, 1170, 1136, 1040, 1014, 822, 684, 572 cm⁻¹; δ_{H} 8.01 (3H, bs, NH₃), 7.18–7.79 (4H, AA'BB' system, C₆H₄), 3.09 (2H, q, *J*=5.9 Hz, CH₂–NH₃), 2.36 (3H, s, CH₃–C₆H₄), 1.84, 1.74 (2H, 2q, *J*=7.25 Hz, CH₃CH₂), 1.68 (3H, s, MeC(Br), 0.94 (3H, t, *J*=7.25 Hz,

CH₃CH₂); FAB/MS: 340 (7, M+3), 338 (8, M+1), 168 (96, M_K+2), 166 (100, M_K), 86 (72), 69 (50), 30 (34%).

4.6.3. 2-Bromopentylamine tosylate (10d). Yield 66%, colorless solid, mp $125-127^{\circ}C$ (dec.) (EtOH–Et₂O); [Found: C, 42.4; H, 6.1; N, 4.3. $C_{12}H_{20}BrNO_3S$ requires C, 42.61; H, 5.96; N, 4.14%]; ν_{max} (KBr) 3070, 1604, 1500, 1470, 1450, 1210, 1160, 1132, 1036, 1008, 822, 684, 568 cm⁻¹; δ_{H} 7.92 (3H, bs, NH₃), 7.16–7.79 (4H, AA'BB' system, C_6H_4), 4.03–4.19 (1H, m, CHBr–CH₂), 3.24–3.33 (1H, m, CH₂NH₃), 2.95–3.11 (1H, m, CH₂NH₃), 2.36 (3H, s, CH₃C₆H₄), 1.61 (2H, q, *J*=7.2 Hz, CH₂CHBr), 1.41–1.25 (2H, nm, CH₃CH₂); FAB/MS: 340 (4, M+3), 338 (4, M+1), 168 (95, M_K+2), 166 (100, M_K), 86 (68), 69 (71), 41 (64), 30 (69%).

4.6.4. 2-Bromohexylamine tosylate (**10e**). Yield 60%, colorless solid, mp 129–131°C (EtOH–Et₂O); [Found: C, 44.1; H, 6.5; N, 4.1. $C_{13}H_{22}BrNO_3S$ requires C, 44.32; H, 6.30; N, 3.98%]; ν_{max} (KBr) 3090, 2940, 1604, 1516, 1460, 1220, 1160, 1136, 1038, 1008, 820, 684, 572 cm⁻¹; δ_H 7.95 (3H, bs, NH₃), 7.17–7.80 (4H, AA'BB' system C₆H₄), 4.02–4.13 (1H, m, CHBrCH₂), 3.05–3.33 (2H, m, CH₂NH₃), 2.36 (3H, s, CH₃C₆H₄), 1.53–1.73 (2H, m, CH₂CHBr), 1.11–1.42 (4H, m, CH₃(CH₂)₂), 0.82 (3H, t, *J*=7.1 Hz, CH₂); FAB/MS: 254 (9, M+3), 252 (10, M+1), 182 (93, M_K+2), 180 (100, M_K), 100 (31), 30 (19 %).

4.6.5. 2-Bromoheptylamine tosylate (10f). Yield 60%, colorless solid, mp 195–196°C (dec.) (EtOH–Et₂O); [Found: C, 46.1; H, 6.7; N, 3.9. $C_{14}H_{24}BrNO_3S$ requires C, 45.91; H, 6.61; N, 3.82%]; ν_{max} (KBr) 3190, 3088, 2090, 1830, 1600, 1470, 1450, 1164, 1136, 1040, 1012, 816, 684, 572 cm⁻¹; δ_H 7.95 (3H, bs, NH₃), 7.17–7.80 (4H, AA'BB' system C_6H_4), 4.02–4.13 (1H, m, CHBrCH₂), 3.05–3.32 (2H, m, CH₂NH₃), 2.36 (3H, s, CH₃C₆H₄), 1.53–1.73 (2H, m, CH₂CHBr), 1.06–1.44 (6H, m, CH₃(CH₂)₃), 0.83 (3H, t, *J*=6.9 Hz, CH₃CH₂); FAB/MS: 368 (5, M+3), 366 (6, M+1), 196 (M_K+2), 194 (100, M_K), 55 (45), 30 (40%).

4.6.6. 2-Bromooctylamine tosylate (10g). Yield 58%, colorless solid, mp 180–181°C (dec.) (EtOH–Et₂O); [Found: C, 47.1; H, 7.0; N, 3.5. $C_{15}H_{26}BrNO_3S$ requires C, 47.37; H, 6.89; N, 3.68%]; ν_{max} (KBr) 3090, 2940, 1618, 1520, 1460, 1230, 1165, 1136, 1038, 1008, 816, 684, 568 cm⁻¹; δ_H 7.95 (3H, bs, NH₃), 7.16–7.79 (4H, AA'BB' system, C_6H_4), 4.02–4.12 (1H, m, CHBr), 2.93–3.32 (2H, m, CHBrCH₂), 2.36 (3H, s, CH₃C₆H₄), 1.11–1.53 (2H, m, CH₂CHBr), 1.18–1.39 (8H, m, CH₃(CH₂)₄), 0.85 (3H, t, *J*=6.75 Hz, CH₃CH₂); FAB/MS: 382 (4, M+3), 380 (4, M+1), 210 (93, M_K+2), 208 (100, M_K), 128 (63), 69 (49), 41 (72), 30 (66%).

4.6.7. 2-Bromo-2,4,4-trimethylpentylamine tosylate (10h). Yield 55%, colorless solid, mp 155–156°C (dec.) (EtOH–Et₂O); [Found: C, 47.1; H, 7.0; N, 3.5. $C_{15}H_{26}$ -BrNO₃S requires C, 47.37; H, 6.89; N, 3.68%]; ν_{max} (KBr) 3190, 3084, 1646, 1604, 1472, 1454, 1200, 1164, 1136, 1050, 1012, 820, 690, 634, 625, 572 cm⁻¹; δ_{H} 8.03 (3H, bs, NH₃), 7.17–7.81 (4H, AA'BB' system, C₆H₄), 3.13–3.20 (2H, m, CH₂NH₃), 2.36 (s, 3H, CH₃C₆H₄), 1.99 (1H, d, *J*=5.55 Hz, *t*-Bu-CH₂), 1.86 (1H, d, *J*=15.55 Hz,

t-Bu-CH₂), 1.83 (3H, s, CH₃CHBr), 0.96 (9H, s, Me₃C); FAB/MS: 382 (3, M+3), 380 (3, M+1), 210 (76, M_K+2), 208 (73, M_K) 128 (95), 57 (100), 41 (47), 30 (27%).

4.6.8. 2-Bromo-2-phenylethylamine tosylate (10i). Yield 86%, colorless solid, mp 130–132°C (dec.) (EtOH–Et₂O); [Found: C, 48.2; H, 4.9; N, 3.9. $C_{15}H_{18}BrNO_3S$ requires C, 48.40; H, 4.88; N, 3.76%]; ν_{max} (KBr) 3030, 2900, 1604, 1512, 1460, 1220, 1170, 1128, 1040, 1008, 868, 820, 760, 680, 600, 572 cm⁻¹; δ_{H} 8.04 (3H, bs, NH₃), 7.14–7.78 (4H, AA'BB' system, C₆H₄, 5.15 (1H, dd, *J*=8.75, 6.0 Hz, CHBrCH₂), 3.31–3.37 (2H, m, CHBrCH₂), 2.34 (3H, s, CH₃C₆H₄); FAB/MS: 374 (8, M+3), 372 (8, M+1), 202 (85, M_K+2), 200 (91, M_K), 185 (26), 183 (25), 120 (100), 104 (79), 91 (24), 30 (41%).

4.7. Addition of BBC (3) to (E)-1-phenylpropene followed by deprotection with HCl

Addition and deprotection were carried out as described for other hydrocarbons. Yield 70%, colorless solid, mp 161–165°C (dec.); [Found: C, 43.0; H, 5.3; N, 5.7. C₉H₁₃BrClN requires C, 43.14; H, 5.23; N, 5.59%]; $\delta_{\rm H}$ 8.72 (3H, bs, NH₃), 7.11–7.59 (5H, m, Ph), 5.53 (1H, d, *J*=5.0 Hz, CHBr *erythro*), 5.22 (1H, d, *J*=10.0 Hz, CHBr *threo*), 3.62–3.83, 3.88–4.10 (1H, 2m, CHCH₃), 1.33, 1.54 (3H, 2d, *J*=6.5 Hz, CH₃CH).

4.8. Addition of BBC (3) to (*Z*)-1-phenylpropene followed by deprotection with HCl

Addition and deprotection were carried out as described for other hydrocarbons. Yield 57%, colorless solid, mp 168–171°C (dec.); [Found: C, 43.2; H, 5.4; N, 5.8. C₉H₁₃BrClN requires C, 43.14; H, 5.23; N, 5.59%]; $\delta_{\rm H}$ 8.77 (3H, bs, NH₃), 7.26–7.55 (5H, m, Ph), 5.48 (1H, *J*=5.25 Hz, CHBr *erythro*), 5.19 (1H, d, *J*=10.25 Hz, CHBr *threo*), 3.67–3.81, 3.91–4.08 (1H, 2m, CHCH₃), 1.33, 1.55 (3H, 2d, *J*=6.5 Hz, CH₃CH).

Acknowledgements

Financial support by a grant 4T09A 047 23 from the State Committee of Scientific Researches (KBN) is gratefully acknowledged.

References

- (a) Tanner, D. Angew. Chem. Int. Ed. Engl. 1994, 33, 599-619, and references cited therein. (b) Mc Coull, W.; Davis, F. A. Synthesis 2000, 1347-1365. (c) Sweeney, J. B. Chem. Soc. Rev. 2002, 247-258.
- 2. Zawadzki, S.; Zwierzak, A. Tetrahedron 1981, 37, 2675–2681.
- Osowska-Pacewicka, K.; Zwierzak, A. *Tetrahedron* 1985, 41, 4717–4725.
- 4. Loev, B.; Kormendy, M. F. J. Org. Chem. 1963, 28, 3421–3426.
- (a) Hanack, M. Conformation Theory; Academic: New York, 1965; p 333. See also: Cahn, R. S.; Ingold, C. K.; Prelog, V. Experientia 1956, 12, 81–100.
- Benedetti, F.; Norbedo, S. Tetrahedron Lett. 2000, 41, 10071–10074.
- Mixer, R. Y.; Heck, R. F.; Winstein, S.; Young, W. Y. J. Am. Chem. Soc. 1953, 75, 4094–4096.
- Walling, C.; Heaton, L. D.; Tanner, D. D. J. Am. Chem. Soc. 1965, 87, 1715–1721.
- Poutsma, M. L. J. Am. Chem. Soc. 1965, 87, 2161–2171, pp 2172–2183.
- Wessig, P.; Schwarz, J. Synlett 1997, 893–894, and references cited therein.
- Mieczkowski, J. B. Bull. Acad. Polon. Sci., Sér. Sci. Chim. 1986, 34, 109–113.