Xenonpill
(Stranger) 02-11-01 20:00 No 172891 |
Enzyme Sequences | Bookmark | ||||||
These are from The Resonance Project v2.15 winter 97/98. Some of the article is available on the resonance project's website. Tryptophan Hydroxylase: Amino Acids: F,S,Q,E,I,G,L,A Nucleuotides (human, rat, rabbit, mouse): TTC,TCC,CAA,GAA,ATT,GGC,CTG,GCT Tryptophan Decarboxylase: Amino Acids: G,K,E,M,V,D,Y Nucleotides: Human: GGG,AAG,GAG,ATG,GTG,GAT,TAC Cow: GGG,AAG,GAG,ATG,GTG,GAT,TAC Rat: GGG,AAG,GAG,ATG,GTG,GAT,TAT Hydroxyindole O-Methyltransferase: Amino Acids: D,A,V,R,E,G,R,N Nucleotides: Human: GAC,GCC,GTG,AGA,GAA,GGA,AGG,AAC Chicken: GAT,GCT,GTG,AGA,GAA,GGA,AGA,AAT Unfortunatly, no references were supplied in the print article or at www.resproject.com, however, it may be possible to get the refs by bugging someone at the resonance project. KrZ, would this kind of thing help you make a yeast that produces gobs of DMT when mixed with water? Xenonpill |
||||||||
KrZ (Hallucinogenius) 02-12-01 07:59 No 172988 |
Re: Enzyme Sequences | Bookmark | ||||||
Tryptophan->Tryptamine DEFINITION C.roseus tdc gene for tryptophan decarboxylase. ACCESSION X67662 /translation="MGSIDSTNVAMSNSPVGEFKP DEFINITION Oryctolagus cuniculus indolethylamine N-methyltransferase (INMT) mRNA, complete cds. ACCESSION AF077826 /translation="MEGGFTGGDEYQKHFLPRDYL This can also catalyze the second methylation according to quicksilver (who has been alot of help, and I am very appreciative of). Complete mRNAs for every step, nothing too gigantic either... |
||||||||
Quicksilver (Newbee) 02-12-01 23:22 No 173044 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
KrZ- Go ahead and post my last PM if you still have it. Maybe there are enough bees with molec' bio' background to find that last step that I couldn't. Basically my work ended in an e.coli that produces DMT (not psilocin) because there is no cloned enzyme that will hydroxylate the 4 position on DMT. (and thus convert DMT->psilocin) Not a total loss, but not what we were looking for. Xenopill- If you know of a indole-hydroxylase, or tryptamine hydroxylase that will work, you'll make me a happy bee. KrZ, thanks for the acknowledgement. In doing so, it reaffirms what most of us know about your strength of character already. -quicksilver- |
||||||||
Rhodium (Chief Bee) 02-13-01 05:40 No 173087 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
Quicksilver: Are yuo telling me that there already exist a bacterium which can convert tryptophan to DMT? How many millimoles can a culture churn out per hour? http://rhodium.lycaeum.org |
||||||||
KrZ (Hallucinogenius) 02-13-01 11:10 No 173127 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
KrZ- I wasn't able to get any of the articles, but I'm not sure of their worth anyway. (since they all pre-date molecular bio/DNA techniques) Ironically, the textbook Biochemistry by Mathews/vanHolde Chapter 21 page 740, review question 4, actually asks for a biosynthesis of psilocybin from tryptophan. Too bad there's no answers in the book..... Regardless, you stated: Tryptophan -1-> Tryptamine -2-> N-Methyl-tryptamine -3-> N,N-dimethyltryptamine -4-> psilocin -5-> psilocybin The enzymes for the first 3 steps are known, and the protein+DNA sequences are known too. 1-Tryptophan->Tryptamine Enzyme=aromatic amino acid decarboxylase AKA: AAAD, AKA: dopadecarboxylase Genbank Accession# M88700 (protein sequence=AAA20894) Reference:Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics 13 (2), 469-471 (1992) 2-Tryptamine -> N-Methyl-tryptamine Enzyme=Indolethylamine-N-Methyltransfera AKA INMT Genebank Accession# NM_006774 Reference:Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization. Genomics 61 (3), 285-297 (1999) 3-N-Methyl-tryptamine -> N,N-DiMethyl-tryptamine Same as #2 4-N,N-dimethyltryptamine -> psilocin There most likely isn't a human gene for this. (otherwise we'd all be alot happier people) I find no references in medline for: indole-hydroxylase, trptamine-hydoxylase, or indolamine-hydroxylase, leading me to believe there is no human (or other species) homolog. Dead end? My first thoughts are maybe the psilocin step is impossible at this time, or at least until someone clones the gene responsible. So where from here? Perhaps the 5-hydroxyderivative would be more attainable. See 5-OH-N,N-DMT http://www.erowid.org/library/books_onli Shulgin is less than enthusiastic about this compound. This could be accomplished with tryptophan hydroxylase. Worth the effort?? I'm skeptical. 5-psilocin -> psilocybin Haven't looked yet. That's all my ramblings. Any feedback would be much appreciated. Cheers. -quicksilver- In reply to: 1. Agurell, S., Blomkvist,S. and Catalfomo, P.. "Biosynthesis of Psilocybin in Submerged Culture of Psilocybin cubensis: Part I. Incorporation of labeled tryptophan and tryptamine," Acta Pharm. Suecica, Vol. 3 (1966), 37-44. 2. Agurell, S., Lars, J. and and Nilsson, C.. "Biosynthesis of Psilocybin: Part II. Incorporation of Labelled Tryptamine Derivatives, Acta Chemica Scandinavica, Vol. 22, No. 4 (1968), 1210-1218. 6. Catalfomo, P. and Tyler, V. E., Jr.. "The Production of Psilocybin in Submerged Culture by Psilocybe cubensis, Lloydia, Vol. 27, No.l (March 11. Leung, A.Y. and Paul, A.G.. "The Relationship of Carbon and Nitrogen Nutrition of Psilocybe baecocystis to the Production of Psilocybin and its Analogs," Lloydia, Vol. 32, No. 1(March, 1969), 66-71.1964), 53-63. |
||||||||
Lilienthal (Moderator) 02-13-01 11:57 No 173135 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
Here's an interesting link for you: http://www.fortunecity.com/meltingpot/gr |
||||||||
KrZ (Hallucinogenius) 02-13-01 14:18 No 173166 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
The INMTs are heavily inhibited by DMT, I'm not so sure they are going to be ideal for process fermentation. Still you could isolate the eukaryotic mRNAs, use RT conversion to make the DNA sequence (no introns), PCR, ecUP-Plasmid insert it, et voila. However, they don't use recombinant e. coli to make aspergillus antibiotics, and there is alot of information about mycofermentation and strain optimization for fungii... Need to grab the Agurell articles... |
||||||||
Quicksilver (Newbee) 02-13-01 18:10 No 173203 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
Rhodium- Quicksilver: Are yuo telling me that there already exist a bacterium which can convert tryptophan to DMT? How many millimoles can a culture churn out per hour? No, but hypothetically one could 'easily' make one. I was/am interested in a bacteria that could make psilocin, but I don't think there is a cloned cDNA for a 4'-indole-hydroxylase. I've found a cytochome p450 (CYP2D6) that will 4'-hydroxylate debrisoquine. (but debrisoquine is not quite an indole, mind you it is similar) And of course there are enzymes that 5'-hydroxylate indoles (such as tryptophan). S. Agurell does seem to be one of the most knowledgable/early forefathers in the field of psilocin biosynthesis. -quicksilver- |
||||||||
Quicksilver (Newbee) 02-13-01 18:16 No 173206 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
Lilienthal- How did you find this link? Could you post the contents of that word file please. Thanks, -quicksilver- |
||||||||
Lilienthal (Moderator) 02-14-01 03:02 No 173259 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
I searched Altavista for '+psilocybin +cloning'. The wordfile seems to be much too big to be posted here. |
||||||||
bioboy (Stranger) 02-14-01 03:36 No 173262 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
1: Plant Mol Biol 1997 Aug;34(6):935-48 Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. A 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11) which catalyzes the 4-hydroxylation of desacetoxyvindoline was purified to homogeneity. Three oligopeptides isolated from a tryptic digest of the purified protein were microsequenced and one oligopeptide showed significant homology to hyoscyamine 6 beta-hydroxylase from Hyoscyamus niger. A 36-mer degenerate oligonucleotide based on this peptide sequence was used to screen a Catharanthus roseus cDNA library and three clones, cD4H-1 to -3, were isolated. Although none of the three clones were full-length, the open reading frame on each clone encoded a putative protein containing the sequence of all three peptides. Primer extension analysis suggested that cD4H-3, the longest cDNA clone, was missing 156 bp at the 5' end of the clone and sequencing of the genomic clone, gD4H-8, confirmed these results. Southern blot analysis suggested that d4h is present as a single-copy gene in C. roseus which is a diploid plant, and the significant differences in the sequence of the 3'-UTR between cD4H-1 and -3 suggest that they represent dimorphic alleles of the same hydroxylase. The identity of the clone was further confirmed when extracts of transformed Escherichia coli expressed D4H enzyme activity. The D4H clone encoded a putative protein of 401 amino acids with a calculated molecular mass of 45.5 kDa and the amino acid sequence showed a high degree of similarity with those of a growing family of 2-oxoglutarate-dependent dioxygenases of plant and fungal origin. |
||||||||
KrZ (Hallucinogenius) 02-14-01 08:18 No 173292 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
I pulled out some of the best parts for you quicksilver, neat stuff; Psilocybin biosynthesis 4-Hydroxylated or 4-methoxylated indoles are very rare in nature. The only known examples beside the psilocybin-type alkaloids are the 4-hydroxylation of indole acetic acid by Aspergillus niger strains (54), methoxylated b-carbolines from Banisteriopsis argentea and Picrasma javanica, the reserpine analog venenatine from Alstonia venenata, the yohimbine analog mitragynine from Mitragyna speciosa (79, 82 p. 703), and the aminopyrimidyl-indolic meridianines from the tunicate Aplidium meridianum (25). Psilocybin has a simple structure in contrast to the former alkaloids. It is formally derived from tryptophan in five distinct biosynthetic reactions, i.e. decarboxylation, indole-hydroxylation, two N-methylations, and O-phosphorylation (Table 1). Feeding experiments with putative intermediates, analogs of them, or radioactive precursors supported the view that tryptophan decarboxylation is the first biosynthetic step and that O-phosphorylation is the final step. The sequence of the remaining intermediate reaction steps is still unclear. Some authors even suppose a biosynthetic grid with multiple routes to psilocybin (Figure 1) (13, 5, 78). Abbreviation Full name Decarboxylase Tryptophan Decarboxylase Hydroxylase Tryptamine 4-Monooxygenase, Tryptamine : Oxygen Oxidoreductase, 4-hydroxylating Methylase Tryptamine-w-amino-methyltran Phosphorylase Psilocin-O-phosphotransfer Table 1. The psilocybin synthesizing enzymes. The full name follows standard enzyme nomenclature while the abbreviated name is used throughout this text. The enzymes may actually consist of several related enzyme with slightly different substrate specifities. Expression cloning procedure For a definitive evaluation of psilocybin biosynthesis, the participating enzymes need to be isolated and tested for their substrate specifities and activities. The feasible way to do this was by genetically cloning and heterologous expression. The cloning methodology chosen is an alternative to PCR based procedures and has been devoloped and used succesfully to clone a broad range of fungal enzymes (21, 20, 15, 14, 53). It consists of ligating a cDNA library into an expression vector (pYes2), transforming a host organism (S. cerevisiae), and a screening the resulting colonies for enzyme activity (Figure 2). The success of such expression cloning procedures depends on reliable and sensitive enzyme assays for the colony screening step. Indeed it was possible to find such assays for all enzymes of the psilocybin biosynthesis pathway (Table 2). A second important requirement is the use of biomaterial containing high amounts of the respective enzymes mRNA. Usually this is a growing tissue containing the metabolites of interest. In this study still developing Psilocybe tampanensis sclerotia were used for mRNA extraction. They grew rapidly and reliably on a special medium and contained high amounts of psilocybin and psilocin. Total RNA isolation from enzyme producing biomaterial \/ mRNA preparation \/ cDNA synthesis \/ Ligation into E. coli / S. cerevisiae shuttle expression vector (pYes2) \/ Amplification in E. coli \/ Colony pooling and plasmid preparation (20 pools of 5,000 colonies each) \/ Yeast transformations \/\/\/\/ Enzyme activity screenings of colonies by color reactions after inducing expression (galactose) \/ Rescreening positive clones \/ Cross-transformation of E. coli, insert sequencing and analysis Figure 2. Expression cloning flow scheme. As used by Dalbøge et al. to clone a broad range of fungal enzymes. Enzyme Screening procedure Decarboxylase 5-fluoro-tryptophan resistance Hydroxylase feeding tryptamines, Keller's reaction Methylase feeding tryptamines, derivatization and removal of substrate, radioactive detection Phosphorylase feeding psilocin, derivatization of substrate, Keller's reaction after phosphatase treatment Table 2. Enzyme activity screening procedures. All tests can be performed on colonies to allow a parallel screening procedures. The Keller's reaction is a very sensitive and specific color reaction for hydroxylated indoles. Mushroom media and culturing Media ingredients and sources: dried unrefined sugar-cane extract (Rapadura, organic food or third world stores), sugar-beet syrup (75% dry matter, food stores), mixed pollen (organic or health food stores), dry yeast extract (Oxoid, England), peptone (Difco Laboratories), agar (Merck, Germany), commercial malt extract / yeast solutions "Salvator" (containing 18.3% stammwuerze) and "Hefe Weissbier dunkel" (dark unfiltered wheat beer, containing 12.4% stammwuerze, both from Paulaner, Munich, Germany). The mycelia were cultured on Parafilm sealed MEY plates (6% malt extract syrup, 0.6% yeast extract, 1.5% agar) at 28°C ± 2°C in an incubator (6). For propagation 1 cm x 1 cm blocks were cut out and transferred to the middle of a new agar plate under sterile conditions. Plant hormones were added as ethanolic solutions. Media containing KH2PO4, pollen, acetic acid, citric acid, and ascorbic acid medium were autoclaved after adjusting the pH. Media from beer (pH around 5.5) were autoclaved for 40 min. Mushroom extraction For a simple but efficient extraction of psilocin as well as psilocybin the following method was applied (98, 58, 45). 7.5 mg lyophilized mushroom material was homogenized in a 1 ml glass mortar with 250 µl methanolic extraction solvent (75% MeOH, 0.1% ascorbic acid). This suspension and 2 x 125 µl methanolic rinsings were pooled in a microcentrifuge tube. After agitation for 10 min at RT the tube was centrifuged for 2 min at 14,000 rpm at RT (5415C centrifuge), the supernatant was transferred to a fresh tube, and the pellet was resuspended in 250 µl ethanolic extraction solvent (75% EtOH, 0.1% ascorbic acid). After agitation for 10 min at RT and centrifugation as above the supernatants were pooled and stored at -20°C in an airtight microcentrifuge tube. Reagents and procedures from the cDNA Synthesis System Kit (Gibco BRL) were used in combination with a vector primed cDNA synthesis literature method (85). This approach was not succesful. Here's a cool transformant screening procedure; 5-Fluoro-tryptophan decarboxylase screening For tryptophan decarboxylase screening transformed FY 73 cells were plated directly onto SC-gal containing 0.5 - 1.5 mM 5-fluoro-tryptophan and were incubated up to 6 days at 30°C. No-Go for submerged culture; The tested Psilocybe strains showed variable preferences for the tested media. In general, the defined Leatham’s media, sugar-cane medium, and beer-based media were poor substrates compared to malt extract based media. The submerged culture produced the highest amounts of biomass, followed by the surface cultures on soft agar (0.2%). But under both conditions the mycelia did not produce measurable amounts of alkaloids. The same was true for Ps. tampanensis submerged cultures in 6% malt extract with no supplement, 0.3% yeast extract, 2% pollen, or both added (data not shown). Ps. cubensis, Ps. tampanensis, Ps. azurescens, and Ps. cyanescens were grown in different media. After 14 days the mycelium was harvested, weighed, extracted, standardized, and analyzed for psilocin and psilocybin content. Ps. cubensis produced psilocin, but no psilocybin under the conditions analyzed. In contrast Ps. tampanensis and Ps. azurescens produced both alkaloids. Ps. azurescens and Ps. cyanescens were growing very slowly on all media tested. Psilocin and psilocybin Rf values Psilocin and psilocybin references (in slightly acidic solution, isolated from Ps. cyanescens fruiting bodies) were TL-chromatographed using various solvent systems. The plates were stained with Van Urk’s reagent (DMCA modification) and Rf values were observed (Table 8). Solvent system Psilocin Rf Psilocybin Rf H2O: MeOH: AcOH (50 + 50 + 1) 0.92 0.88 MeOH 0.54 0.11 Acetone 0.30 0.06 MeOH: AcOH (1 + 1) 0.33 0.13 H2O 0.88 0.47 H2O: AcOH (1 + 1) 0.88 0.76 nPrOH: H2O: AcOH (10 + 3 + 3) 0.71 0.39 CH2Cl2 0.00 0.00 Best Host; Yeast as host organism An important factor for a succesful expression cloning procedure is the choice of an adequate host organism. Yeasts, especially S. cerevisiae, are easy to culture and grow rapidly. As well efficient transformation techniques in common with bacteria have been developed. Otherwise they have many compartments and posttranslational processing and transport systems in common with complex multicellular eukaryotes, especially with other fungi like mushrooms. For the crosstransformation from positive clones into E. coli simple methods exist (90, 84). REFERENCES 1. Brassinosteroids. G. Adam, V. Marquardt. Phytochem. 25: 1787 (1986) 2. Biosynthesis of psilocybin in submerged culture of Psilocybe cubensis. S. Agurell, S. Blomkvist, P. Catalfomo. Acta Pharm. Suecica 3: 37 (1966) 3. Biosynthetic studies on ergot alkaloids and related indoles. S. Agurell. Acta Pharm. Suecica 3: 71 (1966) 4. A biosynthetic sequence from tryptophan to psilocybin. S. Agurell, J. G. L. Nilsson. Tet. Lett. 9: 1063 (1968) 5. Biosynthesis of psilocybin. S. Agurell, J. G. L. Nilsson. Acta Chem. Scand. 22: 1210 (1968) 6. The influence of temperature of mycelial growth of Psilocybe, Paneolus, and Copelandia. R. W. Ames. Mycopath. et Mycol. Appl. 9: 268 (1958) 7. Occurrence of psilocybin and psilocin in certain Conocybe and Psilocybe species. R. G. Benedict, L. R. Brady, A. H. Smith, V. E. Tyler. Lloydia. 25: 156 (1972) 8. Galerina steglichii spec. nov., ein halluzinogener Häubling. H. Besl. Z. Mycol. 59: 215 (1993) 9. Quantitative analysis of psilocybin and psilocin in Psilocybe baeocystis (Singer and Smith) by high-performance liquid chromatography and by thin layer chromatography. M. W. Beug, J. Bigwood. J. Chrom. 207: 379 (1981) 10. Psilocybin and psilocin levels in twenty species from seven genera of wild mushrooms in the pacific northwest, USA. M. W. Beug, J. Bigwood. J. Ethnopharmacol. 5: 271 (1982) 11. Tryptophan als biogenetische Vorstufe des Psilocybins. A. Brack, A. Hofmann, F. Kalberer, H. Kobel, J. Rutschmann. Arch. Pharm. 294: 230 (1961) 12. The production of psilocybin in submerged culture by Psilocybe cubensis. P. Catalfomo, V. E. Tyler. Lloydia 27: 53 (1964) 13. Psilocin, bufotenine and serotonin: historical and biosynthetic observations. W. C. Chilton, J. Bigwood, R. E. Jensen. J. Psyched. Drugs 11: 61 (1979) 14. Expression cloning, purification and characterization of a b-1,4-galactanase from Aspergillus aculeatus. S. Christgau, S. Sandal, L. V. Kofod, H. Dalbøge. Curr. Genet. 27: 135 (1995) 15. Pectin methyl esterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme. S. Christgau, L. V. Kofod, T. Halkier, L. N. Andersen, M. Hockauf, K. Dörreich, H. Dalbøge, S. Kauppinen. Biochem. J. 319: 705 (1996) 16. Determination of psilocybin in Psilocybe semilanceata using high-performance liquid chromatography on a silica column. A. L. Christiansen, K. E. Rasmussen, F. Tønnesen. J. Chrom. 210: 163 (1981) 17. Screening of hallucinogenic mushrooms with high-performance liquid chromatography and multiple detection. A. L. Christiansen, K. E. Rasmussen. J. Chrom. 270: 293 (1983) 18. Ultra-fast alkaline lysis plasmid extraction (UFX). R. S. Cormack, I. E. Somssich. Elsevier Techn. Tips Online (1997) 19. Carbon source dependent differences in the composition of the cell walls of the basidiomycete Picnoporus cinnabarinus. J. A. Cury, D. Amaral. Can. J. Microbiol. 23: 1313 (1977) 20. Using molecular techniques to identify new microbial biocatalysts. H. Dalbøge, L. Lange. Trends Biotech. 16: 265 (1998) 21. A novel method for efficient expression cloning of fungal enzyme genes. H. Dalbøge, H. P. Heldt-Hansen. Mol. Gen. Genetics 243: 253 (1994) 22. Second-strand cDNA synthesis with E. coli DNA polymerase I and RNase H: the fate of information at the mRNA 5’ terminus and the effect of E. coli DNA ligase. J. M. D’Alessio, G. F. Gerard. Nucl. Acid Res. 16: 1999 (1988) 23. Ligation of EcoRI endonuclease generated DNA fragments into linear and circular structures. A. Dugaiczyk, H. W. Boyer, H. M. Goodman. J. Mol. Biol. 96: 171 (1975) 24. A highly sensitive and non-lethal beta-galactosidase plate assay for yeast. H. M. Duttweiler. Trends Gen. 12: 340 (1996) 25. Indole alkaloids from the tunicate Aplidium meridianum. L. H. Franco, E. B. Joffe, L. Puricelli, M. Tatian, A. M. Seldes, J. A. Palerma. J. Nat. Prod. 61: 1130 (1998) 26. Der erste Nachweis des Vorkommens von Psilocybin in Rißpilzen. J. Gartz, G. Drewitz. Z. Mycol. 51: 199 (1985) 27. Zur Untersuchung von Psilocybe semilanceata (Fr.) Kumm. J. Gartz. Pharmazie 40: 506 (1985) 28. Vergleichende dünnschichtchromatographische Untersuchung zweier Psilocybe- und einer halluzinogenen Inocybeart. J. Gartz. Pharmazie. 40: 134 (1985) 29. Dünnschichtchromatographische Analyse der Inhaltsstoffe von Pilzen der Gattung Stropharia. J. Gartz. Pharmazie. 40: 134 (1985) 30. Quantitative Bestimmung der Indolderivate von Psilocybe semilanceata (Fr.) Kumm. J. Gartz. Biochem. Physiol. Pflanzen 181: 117 (1986) 31. Vorkommen von Psilocybin und Baeocystin in Fruchtkörpern von Pluteus salicinus. J. Gartz. Planta Med. 290 (1987) 32. Variation der Indolalkaloide von Psilocybe cubensis durch unterschiedliche Kulturbedingungen. J. Gartz. Beiträge zur Kenntnis der Pilze Mitteleuropas 3: 257 (1987) 33. Biotransformation of tryptamine in fruiting body of Psilocybe cubensis. J. Gartz. Planta Medica 55: 249 (1988) 34. Biotransformation of tryptamine derivatives in mycelial cultures of Psilocybe. J. Gartz. J. Basic Microbiol. 29: 347 (1989) 35. Analysis and cultivation of fruit bodies and mycelia of Psilocybe bohemica. J. Gartz, G. K. Müller. Biochem. Physiol. Pflanzen. 184: 337 (1989) 36. Analyse der Indolderivate in Fruchtkörpern und Mycelien von Paneolus subalteatus (Berk. & Br) Sacc. J. Gartz. Biochem. Physiol. Pflanzen 184: 171 (1989) 37. Bildung und Verteilung der Indolalkaloide in Fruchtkörpern, Mycelien und Sklerotien von Psilocybe cubensis. J. Gartz. Beiträge zur Kenntnis der Pilze Mitteleuropas 5: 167 (1989) 38. Growth-promoting effect of a brassinosteroid in mycelial cultures of the fungus Psilocybe cubensis. J. Gartz, G. Adam, H.-M. Vorbrodt. Naturw. 77: 388 (1990) 39. Einfluß von Phosphat auf Fruktifikation und Sekundärmetabolismen der Myzelien von Psilocybe cubensis, Psilocybe semilanceata und Gymnopilus purpuratus. J. Gartz. Z. Mycol. 57: 149 (1991) 40. Ethnomycology, biochemistry, and cultivation of Psilocybe samuiensis Guzmán, Bandala and Allen, a new psychoactive fungus from Koh Samui, Thailand. J. Gartz, J. W. Allen, M. D. Merlin. J. Ethnopharmacol. 43: 73 (1994) 41. Occurence of psilocybin and psilocin in Psilocybe pseudobullacea (Petch) Pegler from the Venezuelan Andes. V. Marcano, A. Morales Méndez, F. Castellano, F. J. Salazar, L. Martinez. J. Ethnopharmacol. 43: 157 (1994) 42. Transforming yeast with DNA. R. D. Gietz, R. H. Schiestl. Meth. Mol. Cell. Biol. 5: 255 (1995) 43. A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. O. J. Goddijn, P. M. van der Duyn-Schouten, R. A. Schilperoort, J. H. Hoge. Plant Mol. Biol. 22: 907 (1993) 44. The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus. M. Goodrich-Tanrikulu, N. E. Mahoney, S. B. Rodriguez. Microbiol. (reading) 141: 2831 (1995) 45. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. F. Hasler, D. Bourquin, R. Brenneisen, T. Bär, F. X. Vollenweider. Pharm. Acta. Helv. 72: 175 (1997) 46. The occurence of psilocybin in Gymnopilus species. G. M. Hatfield, L. J. Valdes, A. H. Smith. Lloydia 41: 140 (1978) 47. Verfahren zur Herstellung und Gewinnung von Psilocybin und Psilocin. R. Heim, A. Hofmann, A. Brack, H. Kobel, R. Cailleux. DBP patent 1087321 (1959) 48. LSD, mein Sorgenkind. A. Hofmann. Klett-Cotta, Stuttgart, Germany (1979), engl. transl.: LSD, my problem child. McGraw-Hill, New York (1980) 49. Psilocybin and Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. A. Hofmann, R. Heim, A. Brack, H. Kobel, A. Frey, H. Ott, Th. Petrzilka, F. Troxler. Helv. Chim. Acta 52: 1557 (1959) 50. Dephosphorylation psilocybin to psilocin by alkaline phosphatase. A. Horita, L. J. Weber. Proc. Soc. Exp. Biol. Med. 106: 32 (1961) 51. High efficiency transformation of Escherichia coli with plasmids. H. Inoue, H. Nojima, H. Okayama. Gene 96: 23 (1990) 52. Isolation of psilocybin from Psilocybe argentipes and ist determination in specimens of some mushrooms. Y. Koike, K. Wada, G. Kusano, S. Nozoe. J. Nat. Prod. 44: 362 (1981) 53. Cloning and characterization of two structurally and functionally divergent rhamnogalacturonases from Aspergillus aculeatus. L. V. Kofod, S. Kauppinen, S. Christgau, L. N. Andersen, H. P. Heldt-Hansen, K. Dörreich, H. Dalbøge. J. Biol. Chem. 269: 29182 (1994) 54. Hydroxylation of indolyl-3-acetic acid by the fungus Aspergillus niger IBFM-F-12. K. A. Koshcheenko, T. G. Baklashova, A. G. Kozlavskii, M. U. Arinbasarov, G. K. Skriabin. Prikl. Biokhim. Mikrobiol. 13: 248 (1977) 55. Sprühreagentien. K. G. Krebs, D. Heusser, H. Wimmer. in: Dünnschichtchromatographie, Ed. E. Stahl, Springer Verlag Berlin, Heidelberg, New York, 2. ed., p. 813 (1967) 56. Gymnopilus purpuratus, ein psilocybinhaltiger Pilz adventiv im Bezirk Rostock. H. Kreisel, U. Lindequist. Z. Mycol. 54: 73 (1988) 57. High-performance liquid chromatographic determination of some psychotropic indole derivatives. R. Kysilka, M. Wurst. J. Chrom. 21: 435 (1989) 58. A novel extraction procedure for psilocybin and psilocin determination in mushroom samples. R. Kysilka, M. Wurst. Planta Med. 56: 327 (1990) 59. H. Laatsch, Department of Organic Chemistry, University of Göttingen, Germany. preliminary communication 60. A chemically defined medium for the fruiting of Lentinus edodes. G. F. Leatham. Mycologia 75: 905 (1983) 61. Effects of growth regulating substances on fungi. K. M. Leelavathy. Can. J. Microbiol. 15: 713 (1968) 62. Production of psilocybin in Psilocybe baeocystis saprophytic culture. A. Y. Leung, A. H. Smith, A. G. Paul. J. Pharm. Sci. 54: 1576 (1965) 63. Baeocystin, a mono-methyl analog of psilocybin from Psilocybe baeocystis saprophytic culture. A. Y. Leung, A. G. Paul. J. Pharm. Sci. 56: 146 (1967) 64. Baeocystin and norbaeocystin: new analogs of psilocybin from Psilocybe baeocystis. A. L. Leung, A. G. Paul. J. Pharm. Sci. 57: 1667 (1968) 65. The relationship of carbon and nitrogen nutrition of Psilocybe baeocystis to the production of psilocybin and ist analogs. A. Y. Leung, A. G. Paul. Lloydia 32: 66 (1969) 66. Molecular cloning. J. Sambrook, E. F. Fritsch, T. Maniatis. Cold Spring Harbour Laboratory Press (1989) 67. Dextran blue as an aid for DNA precipitation and gel loading. U. Matysiak-Scholze, S. Dimmeler, M. Nehls. Elsevier Techn. Tips Online (1996) 68. Psilocybe semilanceata (Fr.) Quel. (Spitzkegeliger Kahlkopf). H. Michaelis. Z. Pilzkunde 43: 305 (1977) 69. Multiple Molecular forms of diarylpropane oxygenase, an H2O2 requiring, lignin degrading enzyme from Phanerochaete chrysosporium. V. Renganathan, K. Miki, M. H. Gold. Arch. Biochem. Biophys. 241: 304 (1985) 70. Permeabiliation of microorganisms by Triton X-100. G. F. Miozzari, P. Niederberger, R. Hütter. Anal. Biochem. 90: 220 (1978) 71. Interrelationship of phosphate nutrition, nitrogen metabolism, and accumulation of key secondary metabolites in saprophytic cultures of Psilocybe cubensis, Psilocybe cyanescens, and Paneolus campanulatus. J. M. Neal, R. G. Benedict, L. R. Brady. J. Pharm. Sci. 57: 1661 (1968) 72. Pharmacotheon. J. Ott. Natural Products Co., Kennewick, WA (1993) 73. Transformation of E. coli using homopolymer-linked plasmid chimeras. S. L. Peacock, C. M. McIver, J. J. Monahan. Biochim. Biophys. Acta 655: 243 (1981) 74. Determination of psilocybin in Psilocybe semilanceata by capillary zone electrophoresis. S. Pedersen-Bjergaard, E. Sannes, K. E. Rasmussen, F. Tønnesen. J. Chrom. 694: 375 (1997) 75. Psilocybian mycetismus with special reference to Paneolus. S. H. Pollock. J. Psyched. Drugs 8: 43 (1976) 76. GLC-mass spectral analysis of psilocin and psilocybin. D. B. Repke, D. T. Leslie, D. M. Mandell, N. G. Kish. J. Pharm. Sci. 66: 743 (1977) 77. Baeocystin in Psilocybe semilanceata. D. B. Repke. J. Pharm. Sci. 66: 113 (1977) 78. Baeocystin in Psilocybe, Conocybe and Paneolus. D. B. Repke. Lloydia 40: 566 (1977) 79. Psilocin analogs. III. Synthesis of 5-methoxy- and 5-hydroxy-1,2,3,4-tetrahydro-9H-pyrido[3 80. Site of action of growth inhibitory tryptophan analogues in Catharanthus roseus cell suspension cultures. F. Sasse, M. Buchholz, J. Berlin. Z. Naturforsch. 38c: 910, 916 (1983) 81. Pihkal. A. Shulgin, A. Shulgin. Transform Press, Berkeley, CA (1991) 82. Tihkal. A. Shulgin, A. Shulgin. Transform Press, Berkeley, CA (1997) 83. Psilocybin in Fruchtkörpern von Inocybe aeruginascens. M. Smerdzieva, M. Wurst, T. Koza, J. Gartz. Planta Med. 83 (1986) 84. A rapid and inexpensive method for isolation of shuttle vector DNA from yeast for the transformation of E. coli. R. Soni, J. A. H. Murray. Nucl. Acid. Res. 20: 5852 (1992) 85. A highly efficient directional cDNA cloning method utilizing an asymmetrically tailed linker-primer plasmid. N. Spickofsky, R. F. Margolskee. Nucl. Acid Res. 19: 7105 (1991) 86. The mushroom cultivator. P. Stamets, J. S. Chilton. Agarikon Press, Olympia, WA (1983) 87. Occurence of 5-hydroxylated indole derivatives in Paneolina foenescii (Fries) Kuehner from various origin. T. Stijve, C. Hischenhuber, D. Ashley. Z. Mycol. 50: 361 (1984) 88. Psilocin, psilocybin, serotonin and urea in Paneolus cyanescens from various origin. T. Stijve. Persoonia 15: 117 (1992) 89. Convenient and effective methods for in vitro cultivation of mycelium and fruiting bodies of Lentinus edodes. Y. H. Tan, D. Moore. Mycol. Res. 96: 14077 (1992) 90. A simple method for rescuing autonomous plasmids from fission yeast. A. Topal, S. Karaer, G. Temizkan. Elsevier Techn. Tips Online (97) 91. Basic yeast methods. J. H. Toyn. Meth. Mol. Cell. Biol. 5: 249 (1995) 92. Influence of plant hormones on a wood-rotting fungus, Coriolus versicolor. S. I. Tsujiyama, J. I. Azuma, K. Okamura. Transact. Mycol. Soc. Japan 34: 369 93. Occurence of serotonin in a hallucinogenic mushroom. V. E. Tyler, JR. Science. 128: 718 (1958) 94. Exogenous regulators in the mycelium of Pleurotus ostreatus after exogenous application. K. Vinklarkova, Z. Sladky. Folia Microbiol. Praha 23: 55 (1978) 95. Mushrooms, Russia and history. Volumes 1 and 2. V. P. Wasson, R. G. Wasson. Pantheon Books, New York (1957) 96. A new psilocybian species of Copelandia. R. A. Weeks. J. Nat. Prod. 42: 469 (1979) 97. Analysis of psychotropic compounds in fungi of the genus Psilocybe by reversed phase high-performance liquid chromatography. M. Wurst, M. Semerdzieva, J. Vokoun. J. Chrom. 286: 229 (1984) 98. Analysis and isolation of indole alkaloids of fungi by high-performance liquid chromatography. M. Wurst, R. Kysilka, T. Koza. J. Chrom. 593: 201 (1992) |
||||||||
Quicksilver (Newbee) 02-20-01 15:47 No 174529 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
Bioboy, Thanks for the ref! What do you think the odds of this enzyme working on a more simple compound (tryptamine) compared to the one the authors used (desacetoxyvindoline) ?? Don't suppose anybody has molecular ligand-binding software they want to share? (Windows or MacOS) (e.g. Sybyl, Autodock, Insight ...but those are all unix i think??) -quicksilver- |
||||||||
stormwind (Stranger) 03-03-01 00:06 No 176271 |
Re: Enzyme Sequences | Bookmark | ||||||
Man Oh Man - when you guys get these yeasts bred and multiplied, please let J***F or someone market some - I'm kinda short on realchem practical knowledge, but I could handle some sourdough starter without blowing the house up I think... "I held my nose I closed my eyes I took a drink I didn't know if it was day or night..." |
||||||||
ZyGoat (Stranger) 03-03-01 05:36 No 176312 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
This is probably a stupid question, but why go to all the trouble of creating a transgenic psilocin producing yeast/bacteria when there already exists a load of fungal organisms capable of this? |
||||||||
stormwind (Stranger) 03-03-01 15:17 No 176354 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
yeast is cheap yeast is easy to grow yeast works fast A neat culture might be a big barrel held in the dark at the correct temp theoretical end products are easily extracted yeast isn't banned anywhere, all strains are as far as FOAF knows universally legal... even if some were not it would take a microbiologist to tell which ones, IF he could without DNA sequencing... And bread is always gonna be OTC, is how this non-chemist hick sees it...so might be useful to legitimate researchers for production of theoretical legal compounds... Man I am gonna go find a home brewers site to study... Hows this sound, "Stinging Bee Rainbow Beer, don't drink too much, or you'll bee up all night!" |
||||||||
Teonanacatl (Hive Bee) 03-24-01 13:42 No 180405 |
Re: PSILOCIN Enzyme Sequences | Bookmark | ||||||
About the inhibition of INMT...best thing would be to do an enzyme assay...chances are, the DMT is acting as a competetive inhibitor...however, if by chance DMT is acting non or uncompetetively, mutations to the E may remove this aspect of control....INMT from rabbit lung has the following relative activities with varying substrate: alpha-methyltryptamine: 131% tryptamine: 100% norharmane: 58% N-methyltryptamine: 44% serotonin: 11% beta-phenethylamine: 5% desipramine: 4% nortryptyline/1,2,3,4-tetrahydroisoquino tyramine/(+/-)octopamine: 1% ethylamine: 0.5% all others are <0.5% (histamine, DMT, dopamine, epinephrine, epinine, ethanolamine, harmane-1,2,3,4-tetrahydrocarboxylic acid, harmol, melatonin, methylamine, nicotinamide, norepinephrine, salsolinol) Note - DMT does have very low action...also points to competetive inhibition...the problem of DMT inhibiting INMT may be dealt with in other manners too...some working in the tissue culture field have come across the problem of producing alkaloids in plant material as it tends to build up toxic levels of alkaloids the plants can't handle...one method of dealing with this is to make the cells more open to the environment or to cause them to release the final products into solution...this has been done with cell damage (which also tends to elicit 2° metabolism, but tendst to slow down later growth), application of low levels of H2O2 as well as a number of synthetic compounds I can't recall right now, I think they were PEGs (polyethyleneglycols)... I believe the thesis lilienthal gave you is very helpful, however, cloning of the E's in the pathway was not completed...another factor which must be looked at is the regulation of each of the genes...yeast is nice for this cause it tends to express genes from higher fungi with no problem...remove the gene with the 5' region attached and look for regulatory factors...or if you're lazy, remove the gene, cut off the 5' region and attach a strong, constitutively expressed promoter (ie. from 1° metabolism)...voila, lots o' E's :) Begin with the dissolution of superfluous matters So that desire and consciousness are free |
||||||||
Teonanacatl (Hive Bee) 03-24-01 14:01 No 180409 |
Re: Enzyme Sequences | Bookmark | ||||||
Hey KrZ...I just did a translated blast search (protein-->nucleotide)...lots o' hits, your second sequence tended to have higher homology with INMTs...some are just general aromatic amino acid decarboxylases, some hits were also for the similar Tyr/Dopa decarboxylases, which are specific to these two substrates (eg. from Papaver somniferum)...you should also consider up-regulating production of S-adenosylmethionine if you are going to express the INMT at high levels, otherwise it might become a limiting factor in the reaction...anyways, here's the top hits(1st 5 from your first sequence, 2nd 5 from your second AA sequence)...now just look for conserved sequences between the enzymes that you are most interested in and see if there are any losses of this conservation in the Tyr/Dopa decarboxylases...hope this helps: 1: P17770 AROMATIC-L-AMINO-ACID DECARBOXYLASE (DOPA DECARBOXYLASE) (TRYPTOPHAN DECARBOXYLASE) BLink, PubMed, Related Sequences, Taxonomy, LinkOut LOCUS DCD_CATRO 500 aa PLN 01-NOV-1995 DEFINITION AROMATIC-L-AMINO-ACID DECARBOXYLASE (DOPA DECARBOXYLASE) (TRYPTOPHAN DECARBOXYLASE). ACCESSION P17770 PID g118306 VERSION P17770 GI:118306 DBSOURCE swissprot: locus DCD_CATRO, accession P17770; class: standard. created: Aug 1, 1990. sequence updated: Aug 1, 1990. annotation updated: Nov 1, 1995. xrefs: gi: gi: 167489, gi: gi: 167490, gi: gi: 18225, gi: gi: 18226, gi: gi: 1247291, gi: gi: 1247292, gi: gi: 68027, gi: gi: 100170, gi: gi: 542023 xrefs (non-sequence databases): PFAM PF00282, PROSITE PS00392 KEYWORDS Lyase; Decarboxylase; Pyridoxal phosphate. SOURCE Madagascar periwinkle. ORGANISM Catharanthus roseus Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Asteridae; euasterids I; Gentianales; Apocynaceae; Catharanthus. REFERENCE 1 (residues 1 to 500) AUTHORS De Luca,V., Marineau,C. and Brisson,N. TITLE Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases JOURNAL Proc. Natl. Acad. Sci. U.S.A. 86 (8), 2582-2586 (1989) MEDLINE 89202373 REMARK SEQUENCE FROM N.A. REFERENCE 2 (residues 1 to 500) AUTHORS Goddijn,O.J., Lohman,F.P., de Kam,R.J., Schilperoort,R.A. and Hoge,J.H. TITLE Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum JOURNAL Mol. Gen. Genet. 242 (2), 217-225 (1994) MEDLINE 94211212 REMARK SEQUENCE FROM N.A. STRAIN=CV. MORNING MIST; TISSUE=LEAF COMMENT ---------------------------------------- This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. The original entry is available from http://www.expasy.ch/sprot and http://www.ebi.ac.uk/sprot ---------------------------------------- [CATALYTIC ACTIVITY] L-TRYPTOPHAN = TRYPTAMINE + CO(2) (ALSO ACTS ON 5-HYDROXY-L-TRYPTOPHAN AND DIHYDROXY-L-PHENYLALANINE (DOPA)). [COFACTOR] PYRIDOXAL PHOSPHATE. [SUBUNIT] HOMODIMER. [SIMILARITY] BELONGS TO GROUP II DECARBOXYLASES (DDC, GAD, HDC AND TYRDC). FEATURES Location/Qualifiers source 1..500 /organism="Catharanthus roseus" /db_xref="taxon:4058" 1..500 Protein 1..500 /product="AROMATIC-L-AMINO-ACID DECARBOXYLASE" /EC_number="4.1.1.28" Site 319 /site_type="binding" /note="PYRIDOXAL PHOSPHATE (BY SIMILARITY)." ORIGIN 1 mgsidstnva msnspvgefk pleaeefrkq ahrmvdfiad yyknvetypv lsevepgylr 61 kripetapyl peplddimkd iqkdiipgmt nwmspnfyaf fpatvssaaf lgemlstaln 121 svgftwvssp aatelemivm dwlaqilklp ksfmfsgtgg gviqnttses ilctiiaare 181 raleklgpds igklvcygsd qthtmfpktc klagiypnni rlipttvetd fgispqvlrk 241 mveddvaagy vplflcatlg ttsttatdpv dslseianef giwihvdaay agsacicpef 301 rhyldgierv dslslsphkw llayldctcl wvkqphlllr alttnpeylk nkqsdldkvv 361 dfknwqiatg rkfrslklwl ilrsygvvnl qshirsdvam gkmfeewvrs dsrfeivvpr 421 nfslvcfrlk pdvsslhvee vnkklldmln stgrvymtht ivggiymlrl avgsslteeh 481 hvrrvwdliq kltddllkea // 1: AAB39709 tryptophan decarboxylase [Camptotheca acuminata] BLink, Related Sequences, Nucleotide, Taxonomy LOCUS AAB39709 498 aa PLN 02-JAN-1997 DEFINITION tryptophan decarboxylase [Camptotheca acuminata]. ACCESSION AAB39709 PID g1763279 VERSION AAB39709.1 GI:1763279 DBSOURCE locus CAU73657 accession U73657.1 KEYWORDS . SOURCE Camptotheca acuminata. ORGANISM Camptotheca acuminata Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Asteridae; Cornales; Cornaceae; Nyssoideae; Camptotheca. REFERENCE 1 (residues 1 to 498) AUTHORS Lopez-Meyer,M. and Nessler,C.L. TITLE Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress JOURNAL Unpublished REFERENCE 2 (residues 1 to 498) AUTHORS Lopez-Meyer,M. and Nessler,C.L. TITLE Direct Submission JOURNAL Submitted (08-OCT-1996) Biology, Texas A&M University, College Station, TX 77843-3258, USA FEATURES Location/Qualifiers source 1..498 /organism="Camptotheca acuminata" /db_xref="taxon:16922" /tissue_type="leaf" Protein 1..498 /function="converts tryptohan to tryptamine" /product="tryptophan decarboxylase" /EC_number="4.1.1.28" CDS 1..498 /gene="tdc2" /coded_by="U73657.1:1576..3072" /note="TDC" ORIGIN 1 mgsidsnydt esagqcrple peefrkqahq mvdfiadyyk niesypvlsq vepgylqsrl 61 petapyrpep fesilkdvhk diipgvthwl spnffayfpa tvssaafvge mlctcfnavg 121 fnwlaspael elemvvmdwl asmlklpnsf tflgtgggvi qgttseailc tliaardral 181 esigvdsihk lvvygsdqth styakacnla gilpcnirsi rteavanfsl spdslhreie 241 advaagmvpl ylcatvgtts ttaidslspl advandyglw fhvdaayags acicpefrhy 301 ldgieradsl slsphkwlls yldccclwvk rpsvlvkals tdpeylknkp sesnsvvdfk 361 dwqvgtgrrf kalrlwfvmr sygvanlqsh irsdiqmakm feefvnsdpr feivvprvfs 421 lvcfrlnpfs ksdpcntell nrkllewvns tgqvyithtk vggvymlrfa vgatlteehh 481 vsaawklire gadallcs // 1: AAB39708 tryptophan decarboxylase [Camptotheca acuminata] BLink, Related Sequences, Nucleotide, Taxonomy LOCUS AAB39708 502 aa PLN 02-JAN-1997 DEFINITION tryptophan decarboxylase [Camptotheca acuminata]. ACCESSION AAB39708 PID g1763277 VERSION AAB39708.1 GI:1763277 DBSOURCE locus CAU73656 accession U73656.1 KEYWORDS . SOURCE Camptotheca acuminata. ORGANISM Camptotheca acuminata Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Asteridae; Cornales; Cornaceae; Nyssoideae; Camptotheca. REFERENCE 1 (residues 1 to 502) AUTHORS Lopez-Meyer,M. and Nessler,C.L. TITLE Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress JOURNAL Unpublished REFERENCE 2 (residues 1 to 502) AUTHORS Lopez-Meyer,M. and Nessler,C.L. TITLE Direct Submission JOURNAL Submitted (08-OCT-1996) Biology, Texas A&M University, College Station, TX 77843-3258, USA FEATURES Location/Qualifiers source 1..502 /organism="Camptotheca acuminata" /db_xref="taxon:16922" /dev_stage="7-day-old seedlings" Protein 1..502 /function="converts tryptophan into tryptamine" /product="tryptophan decarboxylase" /EC_number="4.1.1.28" CDS 1..502 /gene="tdc1" /coded_by="U73656.1:189..1697" /note="TDC" ORIGIN 1 mgsldsnydt espasvgqfn pldpeefrkq ahcivdfiad yykniesypv lsqvdpgyrh 61 srlgknapyr sepfesilkd vqkdiipgmt hwmspnffah fpatvssaaf vgemlctcfn 121 svgfnwlasp aatelemvvi dwlanmlklp ksfmfsgtgg gvlqgttsea ilctliaasp 181 mhfeivgvkt stsfvvygsd qthstyakac klagilpcni rsipttadsn fsvsplllrr 241 aieadkaagm vplyicatvg ttsttaidpl ssladvandy gvwfhvdaay agsacicpef 301 rhyldgiera dslslsphkw llsyldcccl wvkspsllvk alstdpeylk nqpsesksvv 361 dykdwqvgtg rrfkalrlwf vmrsygvanl qshirtdvqm akmfegfvks dprfeilvpr 421 vfslvcfrln pisgsdptgt ealnrklldw vnstgrvymt htkvggiyml rfavgatlte 481 krhvssawkl ikegadvllk ed // 1: AAG60665 tyrosine/dopa decarboxylase [Thalictrum flavum subsp. glaucum] BLink, Related Sequences, Nucleotide, Taxonomy LOCUS AF314150_1 518 aa PLN 31-JAN-2001 DEFINITION tyrosine/dopa decarboxylase [Thalictrum flavum subsp. glaucum]. ACCESSION AAG60665 PID g12620328 VERSION AAG60665.1 GI:12620328 DBSOURCE locus AF314150 accession AF314150.1 KEYWORDS . SOURCE Thalictrum flavum subsp. glaucum. ORGANISM Thalictrum flavum subsp. glaucum Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; Ranunculales; Ranunculaceae; Thalictrum. REFERENCE 1 (residues 1 to 518) AUTHORS Samanani,N. and Facchini,P.J. TITLE Cloning and characterization of a tyrosine/dopa decarboxylase cDNA from the meadow rue, Thalictrum flavum ssp. glaucum JOURNAL Unpublished REFERENCE 2 (residues 1 to 518) AUTHORS Samanani,N. and Facchini,P.J. TITLE Direct Submission JOURNAL Submitted (16-OCT-2000) Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada COMMENT Method: conceptual translation supplied by author. FEATURES Location/Qualifiers source 1..518 /organism="Thalictrum flavum subsp. glaucum" /sub_species="glaucum" /db_xref="taxon:150095" /note="cell suspension culture" Protein 1..518 /product="tyrosine/dopa decarboxylase" /EC_number="4.1.1.25" CDS 1..518 /gene="TYDC1" /coded_by="AF314150.1:116..1672" ORIGIN 1 mgslhvedld niskctvenp ldpeefrrqg hmmidflady yrdiekypvr sqvepgylrk 61 eipdsapynp esietiledv hkqiipgith wqspnyfayf pssgsvagfl gemlstgfnv 121 vgfnwmsspa atelesivmd wlgkmlklpk sflfsgnggg vlqgttceai lctltaardr 181 mlnkigreni cklvvygsdq thcalqkaaq iagihpnnfr avpttkandy glsasalrst 241 iledieaglv plflcatvgt tsstavdpig plckvasdys iwvhvdaaya gsacicpefr 301 hfidgvenad sfslnahkwf fttldccclw vkepsalika lstnpeylrn kateshqvvd 361 ykdwqialsr rframklwlv lrsygvanlr nflrshvkma knfegfiald krfeivvprt 421 famvcfrllp prspliiktn gyqngngvyh kdesraneln rrllesinas gsaymthsmv 481 ggvymirfav gaslteerhv ilawkvvqeh adavlatf // 1: P54769 TYROSINE/DOPA DECARBOXYLASE 2 [INCLUDES: DOPA DECARBOXYLASE (DDC); TYROSINE DECARBOXYLASE ] BLink, PubMed, Related Sequences, Taxonomy, LinkOut LOCUS TYD2_PAPSO 531 aa PLN 15-JUL-1999 DEFINITION TYROSINE/DOPA DECARBOXYLASE 2 [INCLUDES: DOPA DECARBOXYLASE (DDC); TYROSINE DECARBOXYLASE ]. ACCESSION P54769 PID g1717826 VERSION P54769 GI:1717826 DBSOURCE swissprot: locus TYD2_PAPSO, accession P54769; class: standard. created: Oct 1, 1996. sequence updated: Oct 1, 1996. annotation updated: Jul 15, 1999. xrefs: gi: gi: 607746, gi: gi: 607747 xrefs (non-sequence databases): PFAM PF00282, PROSITE PS00392 KEYWORDS Lyase; Decarboxylase; Pyridoxal phosphate; Multigene family. SOURCE opium poppy. ORGANISM Papaver somniferum Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta; eudicotyledons; Ranunculales; Papaveraceae; Papaver. REFERENCE 1 (residues 1 to 531) AUTHORS Facchini,P.J. and De Luca,V. TITLE Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy JOURNAL J. Biol. Chem. 269 (43), 26684-26690 (1994) MEDLINE 95014524 REMARK SEQUENCE FROM N.A. STRAIN=CV. MARIANNE COMMENT ---------------------------------------- This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. The original entry is available from http://www.expasy.ch/sprot and http://www.ebi.ac.uk/sprot ---------------------------------------- [FUNCTION] MARGINALLY HIGHER SUBSTRATE SPECIFICITY FOR L-DOPA OVER L-TYROSINE. [CATALYTIC ACTIVITY] L-TYROSINE = TYRAMINE + CO(2). [COFACTOR] PYRIDOXAL PHOSPHATE. [SUBUNIT] HOMODIMER (BY SIMILARITY). [TISSUE SPECIFICITY] PREDOMINANTLY EXPRESSED IN THE ROOTS AND STEMS, WHILE A LOWER LEVEL EXPRESSION IS SEEN IN THE SEPALS AND CARPELS OF FULLY EXPANDED FLOWERS. [SIMILARITY] BELONGS TO GROUP II DECARBOXYLASES (DDC, GAD, HDC AND TYRDC). FEATURES Location/Qualifiers source 1..531 /organism="Papaver somniferum" /db_xref="taxon:3469" 1..531 Protein 1..531 /product="TYROSINE/DOPA DECARBOXYLASE 2 [INCLUDES: DOPA DECARBOXYLASE" /EC_number="4.1.1.28" /EC_number="4.1.1.25" Site 319 /site_type="binding" /note="PYRIDOXAL PHOSPHATE (BY SIMILARITY)." ORIGIN 1 mgslntedvl enssafgvtn pldpeefrrq ghmiidflad yyrdvekypv rsqvepgylr 61 krlpetapyn pesietilqd vtteiipglt hwqspnyyay fpssgsvagf lgemlstgfn 121 vvgfnwmssp aatelesvvm dwfgkmlnlp esflfsgsgg gvlqgtscea ilctltaard 181 rklnkigreh igrlvvygsd qthcalqkaa qvaginpknf raiktfkens fglsaatlre 241 viledieagl iplfvcptvg ttsstavdpi spicevakey emwvhvdaay agsacicpef 301 rhfidgveea dsfslnahkw ffttldcccl wvkdpsalvk alstnpeylr nkatesrqvv 361 dykdwqials rrfrslklwm vlrsygvtnl rnflrshvkm aktfeglicm dgrfeitvpr 421 tfamvcfrll ppktikvydn gvhqngngvv plrdenenlv lanklnqvyl etvnatgsvy 481 mthavvggvy mirfavgstl teerhviyaw kilqehadli lgkfseadfs s // 1: AAC97491 indolethylamine N-methyltransferase [Oryctolagus cuniculus] BLink, PubMed, Related Sequences, Nucleotide, Taxonomy LOCUS AAC97491 263 aa MAM 22-DEC-1998 DEFINITION indolethylamine N-methyltransferase [Oryctolagus cuniculus]. ACCESSION AAC97491 PID g4039109 VERSION AAC97491.1 GI:4039109 DBSOURCE locus AF077826 accession AF077826.1 KEYWORDS . SOURCE rabbit. ORGANISM Oryctolagus cuniculus Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Lagomorpha; Leporidae; Oryctolagus. REFERENCE 1 (residues 1 to 263) AUTHORS Thompson,M.A. and Weinshilboum,R.M. TITLE Rabbit lung indolethylamine N-methyltransferase. cDNA and gene cloning and characterization JOURNAL J. Biol. Chem. 273 (51), 34502-34510 (1998) MEDLINE 99069450 REFERENCE 2 (residues 1 to 263) AUTHORS Thompson,M.A. and Weinshilboum,R.M. TITLE Direct Submission JOURNAL Submitted (13-JUL-1998) Pharmacology, Mayo Clinic/Mayo Foundation, 200 1st St. SW, Rochester, MN 55905, USA COMMENT Method: conceptual translation supplied by author. FEATURES Location/Qualifiers source 1..263 /organism="Oryctolagus cuniculus" /db_xref="taxon:9986" /tissue_type="lung" Protein 1..263 /function="catalyzes the N-methylation of tryptamine" /product="indolethylamine N-methyltransferase" CDS 1..263 /gene="INMT" /coded_by="AF077826.1:16..807" ORIGIN 1 meggftggde yqkhflprdy lntyysfqsg pspeaemlkf nleclhktfg pgglqgdtli 61 digsgptiyq vlaacesfkd itlsdftdrn reelakwlkk epgaydwtpa lkfacelegn 121 sgrwqekaek lratvkrvlk cdanlsnplt pvvlppadcv ltllamecac csldayraal 181 rnlasllkpg ghlvttvtlq lssymvgere fscvalekee veqavldagf dieqllyspq 241 sysastapnr gvcflvarkk pgs // 1: XP_004862 indolethylamine N-methyltransferase [Homo sapiens] BLink, Related Sequences, Nucleotide, Taxonomy, LinkOut LOCUS XP_004862 263 aa PRI 09-FEB-2001 DEFINITION indolethylamine N-methyltransferase [Homo sapiens]. ACCESSION XP_004862 PID g11420979 VERSION XP_004862.1 GI:11420979 DBSOURCE REFSEQ: accession XM_004862.1 KEYWORDS . SOURCE human. ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (residues 1 to 263) AUTHORS NCBI Annotation Project. TITLE Direct Submission JOURNAL Submitted (04-FEB-2001) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA COMMENT GENOME ANNOTATION REFSEQ: This reference sequence was derived by automated computational analysis of NCBI genomic sequence contig NT_007825 using gene prediction method: Acembly. Supporting evidence includes similarity to: 71 proteins, 1 mRNAs See details in AceView Method: conceptual translation supplied by author. FEATURES Location/Qualifiers source 1..263 /organism="Homo sapiens" /db_xref="taxon:9606" /chromosome="7" Protein 1..263 /product="indolethylamine N-methyltransferase" Region 4..259 /region_name="NNMT/PNMT/TEMT family" /db_xref="CDD:pfam01234" /note="NNMT_PNMT_TEMT" CDS 1..263 /gene="INMT" /db_xref="LocusID:11185" /db_xref="MIM:604854" /coded_by="TR00067273:1..792" ORIGIN 1 mkggftggde yqkhflprdy latyysfdgs pspeaemlkf nleclhktfg pgglqgdtli 61 digsgptiyq vlaacdsfqd itlsdftdrn reelekwlkk epgaydwtpa vkfacelegn 121 sgrweekeek lraavkrvlk cdvhlgnpla pavlpladcv ltllamecac csldayraal 181 cnlasllkpg ghlvttvtlr lpsymvgkre fscvalekee veqavldagf dieqllhspq 241 sysvtnaann gvcfivarkk pgp // 1: NP_006765 indolethylamine N-methyltransferase; thioester S-methyltransferase-like [Homo sapiens] BLink, PubMed, Related Sequences, Nucleotide, Taxonomy, OMIM, LinkOut LOCUS NP_006765 263 aa PRI 03-FEB-2001 DEFINITION indolethylamine N-methyltransferase; thioester S-methyltransferase-like [Homo sapiens]. ACCESSION NP_006765 PID g10092584 VERSION NP_006765.2 GI:10092584 DBSOURCE REFSEQ: accession NM_006774.2 KEYWORDS . SOURCE human. ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (residues 1 to 263) AUTHORS Thompson,M.A., Moon,E., Kim,U.J., Xu,J., Siciliano,M.J. and Weinshilboum,R.M. TITLE Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization JOURNAL Genomics 61 (3), 285-297 (1999) MEDLINE 20021766 PUBMED 10552930 COMMENT PROVISIONAL REFSEQ: This record has not yet been subject to final NCBI review. The reference sequence was derived from AF128848.1, AF128847.1. On Sep 12, 2000 this sequence version replaced gi:5803044. FEATURES Location/Qualifiers source 1..263 /organism="Homo sapiens" /db_xref="taxon:9606" /chromosome="7" /map="7p15.3-p15.2" Protein 1..263 /product="indolethylamine N-methyltransferase" /note="thioester S-methyltransferase-like" Region 4..259 /region_name="NNMT/PNMT/TEMT family" /db_xref="CDD:pfam01234" /note="NNMT_PNMT_TEMT" CDS 1..263 /gene="INMT" /db_xref="LocusID:11185" /db_xref="MIM:604854" /coded_by="NM_006774.2:1..792" ORIGIN 1 mkggftggde yqkhflprdy latyysfdgs pspeaemlkf nleclhktfg pgglqgdtli 61 digsgptiyq vlaacdsfqd itlsdftdrn reelekwlkk epgaydwtpa vkfacelegn 121 sgrweekeek lraavkrvlk cdvhlgnpla pavlpladcv ltllamecac csldayraal 181 cnlasllkpg ghlvttvtlr lpsyvvgkre fscvalekee veqavldagf dieqllhspq 241 sysvtnaann gvccivarkk pgp // 1: AAF18305 indolethylamine N-methyltransferase [Homo sapiens] BLink, PubMed, Related Sequences, Nucleotide, Taxonomy, OMIM, LinkOut LOCUS AF128847_1 263 aa PRI 16-DEC-1999 DEFINITION indolethylamine N-methyltransferase [Homo sapiens]. ACCESSION AAF18305 PID g6580817 VERSION AAF18305.1 GI:6580817 DBSOURCE locus AF128847 accession AF128847.1 KEYWORDS . SOURCE human. ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (residues 1 to 263) AUTHORS Thompson,M.A., Moon,E., Kim,U.J., Xu,J., Siciliano,M.J. and Weinshilboum,R.M. TITLE Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization JOURNAL Genomics 61 (3), 285-297 (1999) MEDLINE 20021766 PUBMED 10552930 REFERENCE 2 (residues 1 to 263) AUTHORS Thompson,M.A., Moon,E., Kim,U.-J., Xu,J., Siciliano,M.J. and Weinshilboum,R.M. TITLE Direct Submission JOURNAL Submitted (17-FEB-1999) Pharmacology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA COMMENT Method: conceptual translation supplied by author. FEATURES Location/Qualifiers source 1..263 /organism="Homo sapiens" /db_xref="taxon:9606" /chromosome="7" /map="7p15.2-p15.3" Protein 1..263 /product="indolethylamine N-methyltransferase" /name="INMT" CDS 1..263 /gene="INMT" /coded_by="AF128847.1:17..808" ORIGIN 1 mkggftggde yqkhflprdy latyysfdgs pspeaemlkf nleclhktfg pgglqgdtli 61 digsgptiyq vlaacdsfqd itlsdftdrn reelekwlkk epgaydwtpa vkfacelegn 121 sgrweekeek lraavkrvlk cdvhlgnpla pavlpladcv ltllamecac csldayraal 181 cnlasllkpg ghlvttvtlr lpsymvgkre fscvalekge veqavldagf dieqllhspq 241 sysvtnaann gvccivarkk pgp // 1: BAB28594 putative [Mus musculus] BLink, PubMed, Related Sequences, Nucleotide, Taxonomy, LinkOut LOCUS BAB28594 264 aa ROD 08-FEB-2001 DEFINITION putative [Mus musculus]. ACCESSION BAB28594 PID g12850108 VERSION BAB28594.1 GI:12850108 DBSOURCE locus AK013010 accession AK013010.1 KEYWORDS . SOURCE house mouse. ORGANISM Mus musculus Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. REFERENCE 1 (sites) AUTHORS Carninci,P. and Hayashizaki,Y. TITLE High-efficiency full-length cDNA cloning JOURNAL Methods Enzymol. 303, 19-44 (1999) REFERENCE 2 (sites) AUTHORS Carninci,P., Shibata,Y., Hayatsu,N., Sugahara,Y., Shibata,K., Itoh,M., Konno,H., Okazaki,Y., Muramatsu,M. and Hayashizaki,Y. TITLE Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes JOURNAL Genome Res. 10 (10), 1617-1630 (2000) MEDLINE 20499374 REFERENCE 3 (sites) AUTHORS Shibata,K., Itoh,M., Aizawa,K., Nagaoka,S., Sasaki,N., Carninci,P., Konno,H., Akiyama,J., Nishi,K., Kitsunai,T., Tashiro,H., Itoh,M., Kikuchi,N., Ishii,Y., Nakamura,S., Hazama,M., Nishine,T., Harada,A., Yamamoto,R., Matsumoto,H., Sakaguchi,S., Ikegami,T., Kashiwagi,K., Fujiwake,S., Inoue,K., Togawa,Y., Izawa,M., Ohara,E., Watahiki,M., Yoneda,Y., Ishikawa,T., Ozawa,K., Tanaka,T., Matsuura,S., Okazaki,Y., Muramatsu,M., Inoue,Y. and Hayashizaki,Y. TITLE RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer JOURNAL Genome Res. 10 (11), 1757-1771 (2000) MEDLINE 20530913 REFERENCE 4 (sites) AUTHORS The RIKEN Genome Exploration Research Group Phase II Team and FANTOM Consortium. TITLE Functional annotation of a full-length mouse cDNA collection JOURNAL Nature 409, 685-690 (2001) REFERENCE 5 (residues 1 to 264) AUTHORS Adachi,J., Aizawa,K., Akahira,S., Akimura,T., Aono,H., Arai,A., Arakawa,T., Carninci,P., Fukuda,S., Fukunishi,Y., Furuno,M., Hanagaki,T., Hara,A., Hayatsu,N., Hiramoto,K., Hiraoka,T., Hori,F., Imotani,K., Ishii,Y., Itoh,M., Izawa,M., Kato,H., Kawai,J., Kojima,Y., Konno,H., Kouda,M., Koya,S., Kurihara,C., Matsuyama,T., Miyazaki,A., Nishi,K., Nomura,K., Numazaki,R., Ohno,M., Okazaki,Y., Okido,T., Owa,C., Saito,H., Saito,R., Sakai,C., Sakai,K., Sano,H., Sasaki,D., Shibata,K., Shibata,Y., Shinagawa,A., Shiraki,T., Sogabe,Y., Suzuki,H., Tagami,M., Tagawa,A., Takahashi,F., Tanaka,T., Tejima,Y., Toya,T., Yamamura,T., Yasunishi,A., Yoshida,K., Yoshino,M., Muramatsu,M. and Hayashizaki,Y. TITLE Direct Submission JOURNAL Submitted (10-JUL-2000) Yoshihide Hayashizaki, The Institute of Physical and Chemical Research (RIKEN), Laboratory for Genome Exploration Research Group, RIKEN Gemomic Sciences Center (GSC), RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp, URL:http://genome.gsc.riken.go.jp/, Tel:81-45-503-9222, Fax:81-45-503-9216) COMMENT Please visit our web site (http://genome.gsc.riken.go.jp/) for further details. cDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN. Division of Experimental Animal Research in Riken contributed to prepare mouse tissues. First strand cDNA was primed with a primer [5' GAGAGAGAGAAGGATCCAAGAGCTCTTTTTTTTTTTTTTT prepared by using trehalose thermo-activated reverse transcriptase and subsequently enriched for full-length by cap-trapper. cDNA went through one round of normalization to Rot = 7.5 and subtraction to Rot = 37.5. Second strand cDNA was prepared with the primer adapter of sequence [5' GAGAGAGAGATTCTCGAGTTAATTAAATTAATCCCCCCCC with XhoI and SstI. Cloning sites, 5' end: XhoI; 3' end: SstI. Host: SOLR. FEATURES Location/Qualifiers source 1..264 /organism="Mus musculus" /strain="C57BL/6J" /db_xref="taxon:10090" /db_xref="MGD:MGI:102963" /db_xref="MGD:MGI:1898920" /clone="2810406G07" /clone_lib="RIKEN full-length enriched mouse cDNA library" /dev_stage="10, 11 days embryo" Protein 1..264 /name="putative" CDS 1..264 /coded_by="AK013010.1:45..839" ORIGIN 1 megkvyigge dyekeftpkd ylttyysfhs gpvaeqeivk fslqnlyqtf stggvggdvl 61 idigsgptiy qllsacevfr eiivtdytpq nmqelqkwlk kepgaydwss ivqhaceleg 121 drsrwqekea klrrtvtrvl rcdvtktppl gsaqvpladc vltflameca cpdidtyraa 181 lrrlagllkp gghlvtlvtl rfqhymvgpk kfsgvyleke vvekaiqdag cqvlkcncvs 241 lsyseaycsh dglcfvvark gpsa // Begin with the dissolution of superfluous matters So that desire and consciousness are free |
||||||||
Quicksilver (Newbee) 03-24-01 19:47 No 180456 |
Re: Enzyme Sequences | Bookmark | ||||||
What is missing is still the enzyme for this step: N,N-dimethyltryptamine -> psilocin Try a blast/medline search for that reaction and see what you get. We already have candidates for the others. (you just dug up similar ones from different species) you should also consider up-regulating production of S-adenosylmethionine if you are going to express the INMT at high levels, otherwise it might become a limiting factor in the reaction Isn't this called SAMe? It can be purchased OTC and added as needed, instead of doing some sort of biological manipulation. -quicksilver- |
||||||||
Teonanacatl (Hive Bee) 04-10-01 12:55 No 183339 |
Re: Enzyme Sequences | Bookmark | ||||||
Well...I looked...it ain't there...this isn't surprising, as the thesis on molecular biology of Psilocybe species (which is recent) noted that this step had not been characterized...there are a number of tyrosine monooxygenases and there is a hit for tryptophan-5-monooxygenase...probably the best way to get the sequence for the hydroxylation of DMT (or NMT/T; it's unknown which step happens first in-vivo) would be PCR amplification of a conserved sequence for aromatic monooxyengases, esp. the Trp-5-monooxygenase...I've run a ClustalX protein sequence alignment on phenylalanine hydroxylase, Trp-5-monooxygenase and Tyr-4-monooxygenase and there is surprisingly high similarity between them all...one conserved region that you could recheck w/ a nucleotide sequence alignment is: IGLASLGA which would come out as 24 bp in nucleotides...unfortunately I don't have any of these in nucleotide form at the moment so I can't calculate the degeneracy that would be present in the PCR primers, but the protein sequence is perfectly conserved here! Whatcha think? Begin with the dissolution of superfluous matters So that desire and consciousness are free |
||||||||